1.Platelet Metabolomics Analysis in Rats of Coronary Heart Disease with Blood Stasis Syndrome by Overexpression of Fibrinogen
Manli ZHOU ; Jiale ZHU ; Liping WANG ; Weixiong JIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):230-237
ObjectiveTo analyze the metabolomic characteristics of platelets in fibrinogen(FIB) overexpression rats of coronary heart disease with blood stasis syndrome(CHD-BSS), explore potential biomarkers, and investigate the mechanism of FIB overexpression on CHD-BSS. MethodsSD rats were randomly divided into BSS group and BSS+FIB overexpression group(BSS+FIB group), with 10 rats in each group. Both the BSS+FIB group and the BSS group were fed a high-fat diet combined with oral administration of vitamin D3 and subcutaneous injection of isoproterenol, but rats in the BSS+FIB group were overexpressed with FIB during the initial modeling stage by transfection with adeno-associated virus(AAV). The overexpression level of FIB in rat liver and plasma samples was detected by enzyme-linked immunosorbent assay(ELISA) and real-time fluorescence quantitative polymerase chain reaction(Real time PCR), as well as the expression level of liver FIB A(FGA) mRNA. The characteristics of metabolites in rat platelet samples were analyzed by ultra-high performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS), and the differential metabolites between groups were screened by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), and the enriched pathways were analyzed. The accuracy of potential biomarkers in the diagnosis of CHD-BSS was evaluated by receiver operating characteristic(ROC) curve. The expression of autophagy related proteins phosphorylated adenosine monophosphate(AMP) activated protein kinase(p-AMPK)/AMPK, phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR, microtubule-associated protein 1 light chain 3(LC3) Ⅱ/Ⅰ and p62 in platelets were detected by Western blot. ResultsCompared with the BSS group, the expression levels of FIB in liver and plasma samples of the BSS+FIB group were significantly increased(P<0.05, P<0.01), and the expression level of FIB mRNA in the liver was remarkably increased(P<0.01), indicating successful overexpression of FIB. Platelet metabolomics results showed significant differences in metabolic profiles between the BSS+FIB group and the BSS group, and a total of 25 significantly enriched metabolic pathways and 8 metabolites involved in these metabolic pathways, among which uric acid, guanosine and ribose 1-phosphate levels were up-regulated, while adenosine diphosphate(ADP), AMP, guanosine diphosphate(GDP), adenylosuccinate and norepinephrine levels were down-regulated. The diagnostic ability analysis of differential metabolites showed that all 8 differential metabolites had good diagnostic ability, with an area under the curve(AUC)>0.85. Western blot results showed that compared with the BSS group, the expression levels of p-mTOR/mTOR and p62 proteins in platelets of the BSS+FIB group was significantly reduced(P<0.01), while the expression levels of p-AMPK/AMPK and LC3Ⅱ/Ⅰ proteins were increased, but the difference was not statistically significant. ConclusionOverexpression of FIB can change the metabolic characteristics of CHD-BSS rat model, involving multiple aspects such as vascular endothelial injury, platelet activation and myocardial function damage. Among them, overexpression of FIB may enhance the occurrence of platelet autophagy, thereby inducing platelet activation and promoting thrombus formation.
2.Structure, content and data standardization of rehabilitation medical records
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Shiyong WU ; Yaoguang ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Jian YANG ; Na AN ; Yuanjun DONG ; Xiaojia XIN ; Xiangxia REN ; Ye LIU ; Yifan TIAN
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):21-32
ObjectiveTo elucidate the critical role of rehabilitation medical records (including electronic records) in rehabilitation medicine's clinical practice and management, comprehensively analyzed the structure, core content and data standards of rehabilitation medical records, to develop a standardized medical record data architecture and core dataset suitable for rehabilitation medicine and to explore the application of rehabilitation data in performance evaluation and payment. MethodsBased on the regulatory documents Basic Specifications for Medical Record Writing and Basic Specifications for Electronic Medical Records (Trial) issued by National Health Commission of China, and referencing the World Health Organization (WHO) Family of International Classifications (WHO-FICs) classifications, International Classification of Diseases (ICD-10/ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), this study constructed the data architecture, core content and data standards for rehabilitation medical records. Furthermore, it explored the application of rehabilitation record summary sheets (home page) data in rehabilitation medical statistics and payment methods, including Diagnosis-related Groups (DRG), Diagnosis-Intervention Packet (DIP) and Case Mix Index. ResultsThis study proposed a systematic standard framework for rehabilitation medical records, covering key components such as patient demographics, rehabilitation diagnosis, functional assessment, rehabilitation treatment prescriptions, progress evaluations and discharge summaries. The research analyzed the systematic application methods and data standards of ICD-10/ICD-11, ICF and ICHI Beta-3 in the fields of medical record terminology, coding and assessment. Constructing a standardized data structure and data standards for rehabilitation medical records can significantly improve the quality of data reporting based on the medical record summary sheet, thereby enhancing the quality control of rehabilitation services, effectively supporting the optimization of rehabilitation medical insurance payment mechanisms, and contributing to the establishment of rehabilitation medical performance evaluation and payment based on DRG and DIP. ConclusionStructured rehabilitation records and data standardization are crucial tools for quality control in rehabilitation. Systematically applying the three reference classifications of the WHO-FICs, and aligning with national medical record and electronic health record specifications, facilitate the development of a standardized rehabilitation record architecture and core dataset. Standardizing rehabilitation care pathways based on the ICF methodology, and developing ICF- and ICD-11-based rehabilitation assessment tools, auxiliary diagnostic and therapeutic systems, and supporting terminology and coding systems, can effectively enhance the quality of rehabilitation records and enable interoperability and sharing of rehabilitation data with other medical data, ultimately improving the quality and safety of rehabilitation services.
3.Mechanism of 1,25(OH)2D3 improving liver inflammation in a rat model of nonalcoholic steatohepatitis induced by choline-deficient L-amino acid-defined diet
Haiyang ZHU ; Jingshu CUI ; Liu YANG ; Mengting ZHOU ; Jian TONG ; Hongmei HAN
Journal of Clinical Hepatology 2025;41(2):254-262
ObjectiveTo investigate the effect of 1,25(OH)2D3 on the level of peroxisome proliferator-activated receptor-γ (PPAR-γ) in the liver, the phenotype of hepatic macrophages, and liver inflammation in a rat model of nonalcoholic steatohepatitis (NASH), as well as the mechanism of 1,25(OH)2D3 improving liver inflammation. MethodsAfter 1 week of adaptive feeding, 24 specific pathogen-free Wistar rats were randomly divided into normal group [choline-supplemented L-amino acid-defined (CSAA) diet], normal+1,25(OH)2D3 group [CSAA diet+1,25(OH)2D3], model group [choline-deficient L-amino acid-defined diet (CDAA) diet], and model+1,25(OH)2D3 group [CDAA diet+1,25(OH)2D3], with 6 rats in each group. The dose of 1,25(OH)2D3 was 5 μg/kg for intraperitoneal injection twice a week for 12 weeks. The serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured, liver histopathology was observed, and SAF score was assessed. M1 hepatic macrophages and M2 hepatic macrophages were measured to analyze in the change in the phenotype of hepatic macrophages, and ELISA was used to measure the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in liver tissue, and qPCR was used to measure the mRNA level of PPAR-γ. The two-factor analysis of variance was use for comparison between groups, and the least significant difference t-test was used for further comparison; the Pearson method was used for correlation analysis. ResultsCompared with the normal group, the model rats with CDAA diet-induced NASH had significant increases in the serum levels of AST and ALT (P=0.019 and P<0.001), the SAF score of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), and the ratio of M1 and M2 hepatic macrophages (P<0.001), as well as a significant increase in the level of TNF-α (P<0.001) and a significant reduction in the level of IL-4 in liver tissue (P=0.025). The 1,25(OH)2D3 group had significant reductions in the serum levels of ALT (P<0.001), the SAF score of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), and the ratio of M1 and M2 hepatic macrophages (P=0.001), the level of IL-1β (P<0.001) and a significant increase in the level of M2 hepatic macrophages (P=0.017), the level of IL-10 (P=0.039), the level of IL-4 (P<0.001), the level of PPAR-γ (P=0.016). There were significant interactions between CDAA diet-induced NASH model and 1,25(OH)2D3 in serum the levels of AST and ALT (P=0.007 and P=0.008), the SAF scores of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), the level of M2 hepatic macrophages (P=0.008), the ratio of M1 and M2 of hepatic macrophages (P=0.005), the level of TNF-α (P<0.001), the level of IL-10 (P=0.038), the level of IL-4 (P<0.001) and the level of PPAR-γ (P=0.009). The correlation analysis showed that PPAR-γ was negatively correlated with the ratio of M1 and M2 hepatic macrophages (r=-0.415, P=0.044) and was positively correlated with M2 hepatic macrophages (r=0.435, P=0.033), IL-10 (r=0.433, P=0.035), and IL-4 (r=0.532, P=0.007). ConclusionThis study shows that 1,25(OH)2D3 improves liver inflammation in NASH by activating PPAR-γ to regulate the phenotypic transformation of hepatic macrophages.
4.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
5.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
6.Research progress on the role of neutrophil extracellular traps in ocular diseases
International Eye Science 2025;25(4):611-614
Neutrophil extracellular traps(NETs)are net-like complexes released by neutrophils and play a crucial role in antimicrobial defense. In addition, NETs can exacerbate inflammatory responses associated with various diseases, including diabetes, cardiovascular diseases, and autoimmune diseases. Currently, the role of NETs in ocular diseases has received extensive attention. This article systematically summarizes the formation mechanism of NETs and their role in maintaining intraocular homeostasis under physiological conditions. At the same time, it focuses on elaborating the pathogenic role of NETs in the field of ophthalmic diseases, such as dry eye, keratitis, uveitis, diabetic retinopathy, retinal vein occlusion, and age-related macular degeneration, emphasizing the importance of NETs as therapeutic targets for ocular diseases and the potential application value as new markers for ocular diseases. Future in-depth research on the mechanism of NETs in ocular diseases will provide a stronger theoretical basis for the treatment of related eye diseases.
7.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
8.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
9.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
10.Mechanism of Fibrinogen Overexpression in Influencing Coronary Heart Disease with Syndrome of Blood Stasis in Rats Based on Mitochondrial Quality Control System
Manli ZHOU ; Liping WANG ; Weixiong JIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):149-158
ObjectiveTo study the effect and mechanism of fibrinogen (Fib) overexpression on mitochondrial quality control system in the rat model of coronary heart disease with the syndrome of blood stasis. MethodsForty male SD rats were randomly assigned into normal, model, Fib, and empty vector (AAV) groups, with 10 rats in each group. The model, Fib, and AAV groups were fed with a high-fat diet adaptively and administrated with 3×106 U·kg-1 vitamin D3 powder by gavage after 7 days and 2×106 U·kg-1 vitamin D3 solution after 14 days. After being fed with a high-fat diet for 7 weeks, rats in each group received subcutaneous injection of isoproterenol (5 mg·kg-1) for 3 days. During the modeling period, rats in the normal group were fed with ordinary feed without any special treatment. The changes in blood lipid and hemorheological indexes of rats in each group were measured. The aorta tissue was stained with hematoxylin-eosin (HE), and the standard lead Ⅱ electrocardiograms (ECGs) of rats in each group were recorded. Enzyme-linked immunosorbent assay (ELISA) and real-time PCR were employed to verify the overexpression levels of Fib in the liver and plasma. Western blotting was employed to determine the protein levels of mitofusin 2 (Mfn2), optic atrophy protein 1 (OPA1), dynamin-related protein 1 (Drp1), phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK)/adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α), PTEN-induced putative kinase 1, and Parkin. Real-time PCR was employed to determine the mRNA levels of AMPK and PGC-1α in the myocardial tissue. The changes in levels of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) in the myocardial tissue were determined by ELISA. ResultsCompared with the normal group, the other three groups showed elevated levels of total cholesterol and low-density lipoprotein cholesterol (P<0.01) and no significant changes in levels of triglyceride and high-density lipoprotein cholesterol. Compared with the model group, the Fib and AAV groups showed risen levels of total cholesterol (P<0.05, P<0.01). Compared with the normal group, the model and Fib groups presented increases in low shear viscosity and middle shear viscosity (P<0.05, P<0.01), and the Fib group showcased an increase in high shear viscosity (P<0.01). Compared with the model group, the Fib group showed increases in low shear viscosity, middle shear viscosity, and high shear viscosity (P<0.05, P<0.01). Compared with the Fib group, the AAV group demonstrated decreases in low shear viscosity, middle shear viscosity, and high shear viscosity (P<0.05, P<0.01). The normal group had an complete aortic structure with well arrangement of elastic fibers. In the model group, the vascular wall became thickened and the intima was rough with inflammatory infiltration. In the Fib group, the intima calcification formed a cavity structure and the intima was abnormally proliferated, while in the AAV group, the intima smooth muscle was slightly proliferated with local calcification. The ECG of the normal group indicated sinus rhythm, and that of the model group presented ST segment oblique elevation (>0.1 mV). The ECG of the Fib group presented characteristic ST segment arch back elevation with T-wave towering, and that of the AAV group presented ST segment oblique elevation. Compared with the normal group, the model and Fib groups showed elevations in levels of liver Fib, plasma Fib, and liver Fibα mRNA (P<0.01), and the AAV group had risen levels of Fib and Fibα mRNA (P<0.01). Compared with the model group, the Fib group presented risen levels of liver Fib and Fibα mRNA (P<0.01). Compared with the Fib group, the AAV group presented decreases in levels of liver Fib, plasma Fib, and liver Fibα mRNA (P<0.01). Compared with the normal group, the other three groups had down-regulated protein and mRNA levels of Mfn2, OPA1, PINK1, Parkin, p-AMPK/AMPK, and PGC-1α (P<0.05, P<0.01) and up-regulated protein levels of Drp1 (P<0.01). Compared with those in the model group, the mRNA and protein levels of Mfn2, OPA1, PINK1, Parkin, p-AMPK/AMPK, and PGC-1α were all down-regulated (P<0.05, P<0.01) and the protein level of Drp1 was up-regulated (P<0.01) in the Fib group. Compared with the Fib group, the AAV group showed differences in protein levels of OPA1, PGC-1α, Parkin, and Drp1 (P<0.05, P<0.01) and an increasing trend in the mRNA levels of AMPK and PGC-1α with no significant difference. Compared with the normal group, the other three groups had elevated levels of ATP in the myocardial tissue (P<0.01). Compared with the model group, the Fib group showed elevated levels of ATP and AMP (P<0.01). Compared with the Fib group, the AAV group exhibited lowered levels of ATP and AMP (P<0.01). ConclusionFib can achieve the overexpression effect in the rat model of coronary heart disease with the syndrome of blood stasis. At the same time, the overexpression of Fib can induce the damage of the mitochondrial quality control system in the myocardial tissue, inhibit mitochondrial dynamics and mitochondrial biosynthesis, and down-regulate mitochondrial autophagy, thereby aggravating myocardial injury in the rat model.

Result Analysis
Print
Save
E-mail