1.Antibacterial magnesium oxide-calcium phosphate composite coating prepared by combining electrodeposition and sol-gel impregnation
Junjie TAN ; Jiaheng DU ; Zhenyu WEN ; Jiyuan YAN ; Kui HE ; Ke DUAN ; Yiran YIN ; Zhong LI
Chinese Journal of Tissue Engineering Research 2024;28(29):4663-4670
BACKGROUND:Calcium phosphate(CaP)coatings are widely used to improve the integration of titanium implants into bone but these coatings are associated with risks of infection.It is thus desirable to confer antibacterial properties to CaP coatings. OBJECTIVE:To prepare CaP-MgO composite coatings by impregnating magnesium oxide(MgO)sol into CaP coatings and assess the in vitro antibacterial activities and cytocompatibility. METHODS:An electrolyte was determined by titration and used for CaP coating electrodeposition on titanium(referred to as Ti-CaP).MgO was impregnated into the coating by immersing in an MgO sol with different mass fractions(15%,30%,50%)and subsequently calcined to form MgO-CaP composite coatings,which were recorded as Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg,respectively.Microstructure,tensile properties,critical load,and Mg2+ release of coatings in vitro were characterized.Antibacterial activity was assayed using spread plate method by culturing S.aureus on the pure titanium sheet surface and Ti-CaP,Ti-Cap-15mg,Ti-Cap-30mg and Ti-Cap-50mg surfaces for 24 and 48 hours.Mouse osteoblast suspension was inoculated on pure titanium sheets and Ti-CaP,Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg coated titanium sheets,respectively.Cell proliferation was detected by CCK-8 assay,and cell survival rate was calculated.The morphology of composite coating soaked in DMEM was also observed. RESULTS AND CONCLUSION:(1)Homogeneous,microporous CaP coatings consisting of octacaclium phosphate crystal flakes were prepared on titanium by electrodeposition.After sol impregnation-calcination,MgO aggregates were filled into the inter-flake voids.The extent of MgO filling and Mg concentration in the coating increased with the number of sol impregnation procedures.When immersed in phosphate buffered saline,all composite coatings actively released Mg2+ within 1 day;subsequently,the Mg2+ release slowed down on day 3.A small amount of Mg2+ release was still detected on day 7.The yield strength,tensile strength and fracture growth rate of Ti-CaP-30Mg coated titanium were not significantly different from those of pure titanium(P>0.05).There was no significant difference in the critical load of Ti-CaP,Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg groups(P>0.05).(2)Except that pure titanium sheet and Ti-CaP had no antibacterial properties,the other samples had good antibacterial properties,and the antibacterial rate increased with the increase of MgO content in the coating.(3)After 1 and 3 days of co-culture,the cell survival rate of Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg groups was lower than that of pure titanium group and Ti-CaP group(P<0.05).After 5 and 7 days of culture,there was no significant difference in cell survival rate among five groups(P>0.05).The content of MgO in the coating decreased gradually with the time of immersion in the medium.(4)The MgO sol impregnation added antibacterial properties to the CaP coatings while retained their biocompatibility.
2.Preliminary study on thyroid ultrasound image restoration algorithm based on deep learning
Min ZHANG ; Chiming NI ; Jiaheng WEN ; Ziye DENG ; Haishan XU ; Haiya LOU ; Mei PAN ; Qiang LI ; Ling ZHOU ; Chuanju ZHANG ; Yu LING ; Jiaoni WANG ; Juanping CHEN ; Gaoang WANG ; Shiyan LI
Chinese Journal of Ultrasonography 2023;32(6):515-522
Objective:To explore the feasibility of deep learning-based restoration of obscured thyroid ultrasound images.Methods:A total of 358 images of thyroid nodules were retropectively collected from January 2020 to October 2021 at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the images were randomly masked and restored using DeepFillv2. The difference in grey values between the images before and after restoration was compared, and 6 sonographers (2 chief physicians, 2 attending physicians, 2 residents) were invited to compare the rate of correctness of judgement and detection of image discrepancies. The ultrasound features of thyroid nodules (solid composition, microcalcifications, markedly hypoechoic, ill-defined or irregular margins, or extrathyroidal extensions, vertical orientation and comet-tail artifact) were extracted according to the Chinese Thyroid Imaging Reporting and Data System (C-TIRADS). The consistency of ultrasound features of thyroid nodules before and after restoration were compared.Results:The mean squared error of the images before and after restoration ranged from 0.274 to 0.522, and there were significant differences in the rate of correctness of judgement and detection of image discrepancies between physicians of different groups(all P<0.001). The overall accuracy rate was 51.95%, the overall detection rate was 1.79%, there were significant differences also within the chief physicians and resident groups (all P<0.001). The agreement rate of all ultrasound features of the nodules before and after image restoration was higher than 70%, over 90% agreement rate for features such as solid composition and comet-tail artifact. Conclusions:The algorithm can effectively repair obscured thyroid ultrasound images while preserving image features, which is expected to expand the deep learning image database, and promote the development of deep learning in the field of ultrasound images.