1. The role of poloxamer 188 for cord blood mononuclear cells into megakaryocytes cultivation and induction in three-dimensional WAVE Bioreactor
Lin CHEN ; Wen YUE ; Xiaoyan XIE ; Xiuyuan ZHANG ; Yang LYU ; Daqing LIU ; Jiafei XI ; Mingyi QU ; Zeng FAN ; Fang FANG ; Xuantao PEI
Chinese Journal of Hematology 2018;39(1):28-31
Objective:
To observe the effect of poloxamer 188 (P188) on megakaryocyte cultivation and induction from cord blood mononuclear cells in order to obtain more megakaryocyte progenitor cells (MPC).
Methods:
The cord blood mononuclear cells were isolated and inoculated in cell culture bag or cell culture flask respectively. The WIGGENS shaker and cell culture bags were used to mimick WAVE Bioreactor for three-dimensional (3D) cell culture, and the P188 was added to induction medium, The cells were detected for morphology, surface marker, viability, and number on day 14.
Results:
In the two-dimensional (2D) culture, CD41+, CD41+/CD61+, CD61+ megakaryocytic numbers increased significantly after adding P188 (all
2.Effect of the sonic hedgehog inhibitor GDC-0449 on an in vitro isogenic cellular model simulating odontogenic keratocysts.
Jiemei ZHAI ; Heyu ZHANG ; Jianyun ZHANG ; Ran ZHANG ; Yingying HONG ; Jiafei QU ; Feng CHEN ; Tiejun LI
International Journal of Oral Science 2019;11(1):4-4
Odontogenic keratocysts (OKCs) are common cystic lesions of odontogenic epithelial origin that can occur sporadically or in association with naevoid basal cell carcinoma syndrome (NBCCS). OKCs are locally aggressive, cause marked destruction of the jaw bones and have a propensity to recur. PTCH1 mutations (at ∼80%) are frequently detected in the epithelia of both NBCCS-related and sporadic OKCs, suggesting that PTCH1 inactivation might constitutively activate sonic hedgehog (SHH) signalling and play a major role in disease pathogenesis. Thus, small molecule inhibitors of SHH signalling might represent a new treatment strategy for OKCs. However, studies on the molecular mechanisms associated with OKCs have been hampered by limited epithelial cell yields during OKC explant culture. Here, we constructed an isogenic PTCH1 cellular model of PTCH1 inactivation by introducing a heterozygous mutation, namely, c.403C>T (p.R135X), which has been identified in OKC patients, into a human embryonic stem cell line using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. This was followed by the induction of epithelial differentiation. Using this in vitro isogenic cellular model, we verified that the PTCH1 heterozygous mutation causes ligand-independent activation of SHH signalling due to PTCH1 haploinsufficiency. This activation was found to be downregulated in a dose-dependent manner by the SHH pathway inhibitor GDC-0449. In addition, through inhibition of activated SHH signalling, the enhanced proliferation observed in these induced cells was suppressed, suggesting that GDC-0449 might represent an effective inhibitor of the SHH pathway for use during OKC treatment.
Anilides
;
pharmacology
;
Basal Cell Nevus Syndrome
;
Hedgehog Proteins
;
genetics
;
pharmacology
;
Humans
;
Molecular Targeted Therapy
;
Odontogenic Cysts
;
genetics
;
physiopathology
;
therapy
;
Odontogenic Tumors
;
genetics
;
physiopathology
;
therapy
;
Pyridines
;
pharmacology