1.Association of the phosphatidylinositol signal pathway with prolonged myocardial ischemia.
Xiuyun DING ; Jiachang YUE ; Shiwen WANG ; Xue GAO ; Xianfeng LI
Chinese Medical Journal 2002;115(3):367-370
OBJECTIVETo study the changes in activity of phosphatidylinositol 4 kinase (PI 4 kinase), phosphatidylinositol 4 phosphate 5 kinase (PIP 5 kinase) and protein kinase C (PKC) during myocardial ischemia and elucidate the relationship between phosphatidylinositol signal pathways and prolonged myocardial ischemia.
METHODSIn vivo an ischemic rat model was used. Activity of PI 4 kinase, PIP 5 kinase and PKC were measured at different times in postischemic heart cells using isotope analysis.
RESULTSThe activity of PI kinase, PIP kinase and PKC in the myocardium increased to peak at 1 hour postischemia, with activities 6.1, 3.0 and 4.0 fold over control levels, respectively. Their activities declined to normal levels with time.
CONCLUSIONThe phosphatidylinositol signal pathway is involved in prolonged myocardial ischemia, but its mechanism needs further study.
1-Phosphatidylinositol 4-Kinase ; metabolism ; Animals ; Male ; Myocardial Ischemia ; enzymology ; Phosphotransferases (Alcohol Group Acceptor) ; metabolism ; Protein Kinase C ; metabolism ; Random Allocation ; Rats ; Rats, Wistar ; Signal Transduction
2.Detection of food-borne rotavirus by molecular motor biosensor.
Jie ZHANG ; Meiling XU ; Xuan WANG ; Yu WANG ; Xiaojin WANG ; Yan LIU ; Dezhou GU ; Guangquan CHEN ; Peirong WANG ; Jiachang YUE
Chinese Journal of Biotechnology 2013;29(5):681-690
To develop a specific, rapid and convenient method based on molecular motor biosensor to detect food-borne rotavirus. A specific probe was encompassed the conservative region of rotavirus's VP7 segment, and a molecular motor detect device was constructed by connecting probes to F0F1-ATPase molecular motor through biotin-streptavidin system. This biosensor's sensitivity was 0.005 ng/mL for rotavirus RNA. Extracted virus RNA was conjugated with the biosensor separately, at the same time ATP was synthesized. By comparing fluorescence intensity, we can detect rotavirus RNA in samples. This method possessed specificity for rotavirus, without any cross-reaction with Hepatitis A virus and noroviris, and it could be accomplished within 1 h. We detected 15 samples using this method and the results were compared with RT-PCR results. This method is sensitive and specific for rotavirus, and it can be used to detect food-borne rotavirus.
Biosensing Techniques
;
methods
;
DNA, Viral
;
analysis
;
genetics
;
Food Microbiology
;
methods
;
Rotavirus
;
genetics
;
isolation & purification
;
Sensitivity and Specificity
3.A redox-responsive self-assembling COA-4-arm PEG prodrug nanosystem for dual drug delivery suppresses cancer metastasis and drug resistance by downregulating hsp90 expression.
Yi ZHOU ; Yingling MIAO ; Qiudi HUANG ; Wenwen SHI ; Jiacui XIE ; Jiachang LIN ; Pei HUANG ; Chengfeng YUE ; Yuan QIN ; Xiyong YU ; He WANG ; Linghao QIN ; Jianhai CHEN
Acta Pharmaceutica Sinica B 2023;13(7):3153-3167
Metastasis and resistance are main causes to affect the outcome of the current anticancer therapies. Heat shock protein 90 (Hsp90) as an ATP-dependent molecular chaperone takes important role in the tumor metastasis and resistance. Targeting Hsp90 and downregulating its expression show promising in inhibiting tumor metastasis and resistance. In this study, a redox-responsive dual-drug nanocarrier was constructed for the effective delivery of a commonly used chemotherapeutic drug PTX, and a COA-modified 4-arm PEG polymer (4PSC) was synthesized. COA, an active component in oleanolic acid that exerts strong antitumor activity by downregulating Hsp90 expression, was used as a structural and functional element to endow 4PSC with redox responsiveness and Hsp90 inhibitory activity. Our results showed that 4PSC/PTX nanomicelles efficiently delivered PTX and COA to tumor locations without inducing systemic toxicity. By blocking the Hsp90 signaling pathway, 4PSC significantly enhanced the antitumor effect of PTX, inhibiting tumor proliferation and invasiveness as well as chemotherapy-induced resistance in vitro. Remarkable results were further confirmed in vivo with two preclinical tumor models. These findings demonstrate that the COA-modified 4PSC drug delivery nanosystem provides a potential platform for enhancing the efficacy of chemotherapies.
4.Expert Consensus for Thermal Ablation of Pulmonary Subsolid Nodules (2021 Edition).
Xin YE ; Weijun FAN ; Zhongmin WANG ; Junjie WANG ; Hui WANG ; Jun WANG ; Chuntang WANG ; Lizhi NIU ; Yong FANG ; Shanzhi GU ; Hui TIAN ; Baodong LIU ; Lou ZHONG ; Yiping ZHUANG ; Jiachang CHI ; Xichao SUN ; Nuo YANG ; Zhigang WEI ; Xiao LI ; Xiaoguang LI ; Yuliang LI ; Chunhai LI ; Yan LI ; Xia YANG ; Wuwei YANG ; Po YANG ; Zhengqiang YANG ; Yueyong XIAO ; Xiaoming SONG ; Kaixian ZHANG ; Shilin CHEN ; Weisheng CHEN ; Zhengyu LIN ; Dianjie LIN ; Zhiqiang MENG ; Xiaojing ZHAO ; Kaiwen HU ; Chen LIU ; Cheng LIU ; Chundong GU ; Dong XU ; Yong HUANG ; Guanghui HUANG ; Zhongmin PENG ; Liang DONG ; Lei JIANG ; Yue HAN ; Qingshi ZENG ; Yong JIN ; Guangyan LEI ; Bo ZHAI ; Hailiang LI ; Jie PAN
Chinese Journal of Lung Cancer 2021;24(5):305-322
"The Expert Group on Tumor Ablation Therapy of Chinese Medical Doctor Association, The Tumor Ablation Committee of Chinese College of Interventionalists, The Society of Tumor Ablation Therapy of Chinese Anti-Cancer Association and The Ablation Expert Committee of the Chinese Society of Clinical Oncology" have organized multidisciplinary experts to formulate the consensus for thermal ablation of pulmonary subsolid nodules or ground-glass nodule (GGN). The expert consensus reviews current literatures and provides clinical practices for thermal ablation of GGN. The main contents include: (1) clinical evaluation of GGN, (2) procedures, indications, contraindications, outcomes evaluation and related complications of thermal ablation for GGN and (3) future development directions.
.