1.Research advances in the mechanisms of circadian regulation in heart failure.
Qiong WANG ; Jia-Yang ZHANG ; Le-Jia QIU ; Li-Hong CHEN
Acta Physiologica Sinica 2025;77(4):653-668
The circadian clock is an endogenous time-keeping system that maintains physiological homeostasis by integrating environmental and genetic interactions. Heart failure is a complex clinical syndrome characterized by structural abnormalities and/or functional impairment of the heart. Growing evidence suggests that core circadian components, such as BMAL1 and REV-ERBα, play important roles in modulating myocardial energy metabolism, inflammatory responses, and oxidative stress, contributing to myocardial structural and metabolic remodeling during heart failure progression. Notably, circadian disruption is closely associated with heart failure, with aberrant blood pressure rhythms and disturbances in the sleep-wake cycle in patients. The time-dependent efficacy of heart failure medications further supports the potential of chronotherapy-based strategies to improve clinical outcomes. Here, we summarize the multifaceted regulatory roles of the circadian clock, particularly core clock genes, in heart failure pathogenesis, providing a theoretical framework for developing personalized chronotherapeutic strategies for heart failure management.
Humans
;
Heart Failure/physiopathology*
;
Circadian Rhythm/physiology*
;
Circadian Clocks/physiology*
;
ARNTL Transcription Factors/physiology*
;
Nuclear Receptor Subfamily 1, Group D, Member 1/physiology*
;
Oxidative Stress
;
Energy Metabolism
;
Animals
2.Root rot and control of Panax quinquefolium: a review.
Rao-Jing LI ; Jia-le LIU ; Jian ZHANG ; Juan CHEN
China Journal of Chinese Materia Medica 2025;50(9):2317-2323
Panax quinquefolium, also known as American ginseng, is a perennial herb in the Araliaceae family. It has the effects of replenishing Qi and nourishing Yin, clearing heat and generating saliva. Additionally, it has protective effects on the nerves, improves myocardial ischemia and hypoxia, regulates metabolism, enhances the body's immunity, and is known as "green gold". However, with the development of the industry and the expansion of planting scales, P. quinquefolium faces serious disease issues that are difficult to prevent and control. Among these, root rot, often referred to as "plant cancer", is one of the most destructive plant diseases affecting the yield and quality of P. quinquefolium. P. quinquefolium root rot is caused by the fungi Fusarium(genus) and Ilyonectria(genus), which severely affect the root system and limit the production and quality of P. quinquefolium, thus restricting the development of the P. quinquefolium industry. In recent years, research on P. quinquefolium root rot has attracted significant attention and made some progress. However, the mechanisms of interaction between the root rot pathogens and the host plant remain unclear. This paper reviews the research progress on the pathogens, infection cycle, disease prevalence, pathogenesis, and biological control of P. quinquefolium root rot to provide prospects for future research, aiming to provide references for the in-depth study and effective control of root rot, and to promote the green and healthy development of the P. quinquefolium industry.
Panax/microbiology*
;
Plant Diseases/prevention & control*
;
Plant Roots/microbiology*
;
Fusarium/pathogenicity*
3.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
4.Independent and Interactive Effects of Air Pollutants, Meteorological Factors, and Green Space on Tuberculosis Incidence in Shanghai.
Qi YE ; Jing CHEN ; Ya Ting JI ; Xiao Yu LU ; Jia le DENG ; Nan LI ; Wei WEI ; Ren Jie HOU ; Zhi Yuan LI ; Jian Bang XIANG ; Xu GAO ; Xin SHEN ; Chong Guang YANG
Biomedical and Environmental Sciences 2025;38(7):792-809
OBJECTIVE:
To assess the independent and combined effects of air pollutants, meteorological factors, and greenspace exposure on new tuberculosis (TB) cases.
METHODS:
TB case data from Shanghai (2013-2018) were obtained from the Shanghai Center for Disease Control and Prevention. Environmental data on air pollutants, meteorological variables, and greenspace exposure were obtained from the National Tibetan Plateau Data Center. We employed a distributed-lag nonlinear model to assess the effects of these environmental factors on TB cases.
RESULTS:
Increased TB risk was linked to PM 2.5, PM 10, and rainfall, whereas NO 2, SO 2, and air pressure were associated with a reduced risk. Specifically, the strongest cumulative effects occurred at various lags: PM 2.5 ( RR = 1.166, 95% CI: 1.026-1.325) at 0-19 weeks; PM 10 ( RR = 1.167, 95% CI: 1.028-1.324) at 0-18 weeks; NO 2 ( RR = 0.968, 95% CI: 0.938-0.999) at 0-1 weeks; SO 2 ( RR = 0.945, 95% CI: 0.894-0.999) at 0-2 weeks; air pressure ( RR = 0.604, 95% CI: 0.447-0.816) at 0-8 weeks; and rainfall ( RR = 1.404, 95% CI: 1.076-1.833) at 0-22 weeks. Green space exposure did not significantly impact TB cases. Additionally, low temperatures amplified the effect of PM 2.5 on TB.
CONCLUSION
Exposure to PM 2.5, PM 10, and rainfall increased the risk of TB, highlighting the need to address air pollutants for the prevention of TB in Shanghai.
China/epidemiology*
;
Humans
;
Air Pollutants/analysis*
;
Tuberculosis/epidemiology*
;
Incidence
;
Meteorological Concepts
;
Particulate Matter/adverse effects*
;
Environmental Exposure
;
Male
;
Female
;
Adult
;
Air Pollution
;
Middle Aged
5.A quality improvement project on reducing antibiotic use duration in very low birth weight preterm infants in the neonatal intensive care unit
Mei-Ying QUAN ; Shu-Ju FENG ; Yu ZHANG ; Chen WANG ; Le-Jia ZHANG ; Zheng-Hong LI
Chinese Journal of Contemporary Pediatrics 2024;26(7):736-742
Objective To develop effective measures to reduce antibiotic use duration in very low birth weight(VLBW)preterm infants in the neonatal intensive care unit through quality improvement methods.Methods The study population consisted of hospitalized VLBW preterm infants,with the percentage of hospitalization time during which antibiotics were used from November 2020 to June 2021 serving as the baseline.The specific quality improvement goal was to reduce the duration of antibiotic use.Factors affecting antibiotic use duration in preterm infants were analyzed using Pareto charts.Key drivers were identified,and specific interventions were formulated based on the stages of antibiotic use.Changes in the percentage of antibiotic use duration were monitored with run charts until the quality improvement target was achieved.Results From November 2020 to June 2021,the baseline antibiotic use duration percentage was 49%,with a quality improvement target to reduce this by 10%within 12 months.The Pareto analysis indicated that major factors influencing antibiotic duration included non-standard antibiotic use;delayed cessation of antibiotics when no infection evidence was present;prolonged central venous catheter placement;insufficient application of kangaroo care;and delayed progress in enteral nutrition.The interventions implemented included:(1)establishing sepsis evaluation and management standards;(2)educating medical staff on the rational use of antibiotics for preterm infants;(3)supervising the enforcement of antibiotic use standards during ward rounds;(4)for those without clear signs of infection and with negative blood cultures,discontinued the use of antibiotics 36 hours after initiation;(5)reducing the duration of central venous catheterization and parenteral nutrition to lower the risk of infection in preterm infants.The control chart showed that with continuous implementation of interventions,the percentage of antibiotic use duration was reduced from 49%to 32%,a statistically significant decrease.Conclusions The application of quality improvement tools based on statistical principles and process control may significantly reduce the antibiotic use duration in VLBW preterm infants.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Purification process for coumarins in Fraxini Cortex by macroporous resin
Dong-Xu ZHANG ; Yong ZHANG ; Si-Han XU-CHEN ; Jia-Yi ZHOU ; Le-Yang YU ; Shen-Shu WANG ; Tong ZHANG ; Yue DING
Chinese Traditional Patent Medicine 2024;46(9):2885-2891
AIM To investigate the purification process for esculin,fraxin,esculetin and fraxetin in Fraxini Cortex by macroporous resin.METHODS Static adsorption experiment was applied to screening resin model,single factor test was adopted in the optimization of purification process,UPLC-QTOF-MS/MS was used for identifying main components,after which heatmap was drawn.RESULTS The optimal resin model was ADS-5.The optimal purification process was determined to be 1.1 BV for loading amount,0.75 g/mL for loading concentration,2 BV pure water for washing impurity,and 4 BV 25%ethanol for eluting effective constituents,coumarins demonstrated the total transfer rate,purity and yield of 84.42%,53.28%and 4.79%,respectively.Total 37 constituents were identified,among which coumarins and phenylethanol glycosides were mainly concentrated in 25%ethanol eluent,organic acids,iridoids and flavonoids were mainly concentrated in 95%ethanol eluent.CONCLUSION This stable,feasible and accurate method can characterize the distribution patterns of coumarins in Fraxini Cortex in different eluents of macroporous resin,which provides guidance for further related pharmaceutical research.
8.Clinical characterization and prediction modeling of lung cancer patients with high energy metabolism
Jiang-Shan REN ; Jun-Mei JIA ; Ping SUN ; Mei PING ; Qiong-Qiong ZHANG ; Yan-Yan LIU ; He-Ping ZHAO ; Yan CHEN ; Dong-Wen RONG ; Kang WANG ; Hai-Le QIU ; Chen-An LIU ; Yu-Yu FAN ; De-Gang YU
Medical Journal of Chinese People's Liberation Army 2024;49(9):1004-1010
Objective To analyze the clinical characteristics of high energy metabolism in lung cancer patients and its correlation with body composition,nutritional status,and quality of life,and to develop a corresponding risk prediction model.Methods Retrospectively analyzed 132 primary lung cancer patients admitted to the First Hospital of Shanxi Medical University from January 2022 to May 2023,and categorized into high(n=94)and low energy metabolism group(n=38)based on their metabolic status.Differences in clinical data,body composition,Patient Generated Subjective Global Assessment(PG-SGA)scores,and European Organization for Research and treatment of Cancer(EORTC)Quality of Life Questionnaire-Core 30(QLQ-C30)scores were compared between the two groups.Logistic regression was used to identify the risk factors for high energy metabolism in lung cancer patients,and a risk prediction model was established accordingly;the Hosmer-Lemeshow test was used to assess the model fit,and the ROC curve was used to test the predictive efficacy of the model.Results Of the 132 patients with primary lung cancer,94(71.2%)exhibited high energy metabolism.Compared with low energy metabolism group,patients in high-energy metabolism group had a smoking index of 400 or higher,advanced disease staging of stage Ⅲ or Ⅳ,and higher levels of IL-6 level,low adiposity index,low skeletal muscle index,and malnutrition(P<0.05),and lower levels of total protein,albumin,hemoglobin level,and prognostic nutritional index(PNI)(P<0.05).There was no significant difference in age,gender,height,weight,BMI and disease type between the two groups(P>0.05).Logistic regression analysis showed that smoking index≥400,advanced disease stage,IL-6≥3.775 ng/L,and PNI<46.43 were independent risk factors for high energy metabolism in lung cancer patients.The AUC of the ROC curve for the established prediction model of high energy metabolism in lung cancer patients was 0.834(95%CI 0.763-0.904).Conclusion The high energy metabolic risk prediction model of lung cancer patients established in this study has good fit and prediction efficiency.
9. Research progress of Parkin protein regulating mitochondrial homeostasis through ubiquitination in cardiovascular diseases
Ke-Juan LI ; Jian-Shu CHEN ; Yi-Xin XIE ; Jia-Le BU ; Xiao-Wei ZHANG ; Yong-Nan LI
Chinese Pharmacological Bulletin 2024;40(2):224-228
In addition to providing energy for cells, mitochondria also participate in calcium homeostasis, cell information transfer, cell apoptosis, cell growth and differentiation. Therefore, maintaining mitochondrial homeostasis is very crucial for the body to carry out normal life activities. Ubiquitination, a post-translational modification of proteins, is involved in various physiological and pathological processes of cells by regulating mitochondrial homeostasis. However, the mechanism by which ubiquitination regulates mitochondrial homeostasis has not been summarized, especially the effect of Parkin protein on cardiovascular diseases. In this paper, the specific mechanism of mitochondrial homeostasis regulated by ubiquitination of Parkin protein is discussed, and the influence of mitochondrial homeostasis imbalance on cardiovascular diseases is reviewed, with a view to providing potential therapeutic strategies for the clinical treatment of cardiovascular diseases.
10.Exosome-Transmitted miR-224-5p Promotes Colorectal Cancer Cell Proliferation via Targeting ULK2 in p53-Dependent Manner
Mei Le YANG ; Qi ZHENG ; Jia Xiao LIU ; Xian Xian LI ; Lim VERONICA ; Qi CHEN ; Hua Zhong ZHAO ; Yang Shu WANG
Biomedical and Environmental Sciences 2024;37(1):71-84
Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer (CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR, respectively. Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p. The protein expressions of p53 and unc-51 like kinase 2 (ULK2) in CRC cells were detected by western blot. Flow cytometry was used to detect cell cycle and apoptosis. Cell proliferation was measured by CCK8 and EdU assay.Results The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage. CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner, and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine. Moreover, ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues. Interestingly, ULK2 inhibited CRC cell proliferation in a p53-dependent manner. Furthermore, exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.Conclusion Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC, which may offer promising targets for CRC prevention and therapy.

Result Analysis
Print
Save
E-mail