1.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
2.Clinical Application and Pharmacological Mechanism of Sishenwan in Treatment of Ulcerative Colitis: A Review
Keqiu YAN ; Xiaoyu ZHANG ; Sifeng JIA ; Yuyu DUAN ; Zixing QIAN ; Yifan CAI ; Junyi SHEN ; Wenjie XIAO ; Xinkun BAO ; Guangjun SUN ; Aizhen LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):261-270
Ulcerative colitis (UC), a chronic, non-specific inflammatory bowel disease with typical symptoms such as abdominal pain, diarrhea, and bloody stools, demonstrates a high relapse rate and difficulty in curing. Sishenwan, first recorded in Internal Medicine Abstract (Nei Ke Zhai Yao), are a classic prescription for treating diarrhea caused by deficiency of the spleen and kidney Yang. The core therapeutic principle of Sishenwan is warming and tonifying the spleen and kidney, and astringing the intestine and stopping diarrhea. In recent years, Sishenwan have demonstrated distinct advantages in the clinical treatment of UC. The pathogenesis of UC involves multiple factors, including immune dysregulation and gut microbiota imbalance. Although Western medicine is effective in the short term, its side effects, high relapse rate, and resistance associated with long-term use pose substantial challenges. Sishenwan have shown excellent clinical outcomes in the treatment of UC due to deficiency of the spleen and kidney Yang. Modern clinical studies indicate that Sishenwan, used alone or in combination with Western medicine or other Chinese medicine compound prescriptions, significantly improve the clinical efficacy in treating UC due to deficiency of the spleen and kidney Yang. Sishenwan effectively alleviate core symptoms such as mucus, pus, and blood in stools, and persistent abdominal pain, reduce Mayo scores and the relapse rate, and improve patients' quality of life. Research on the material basis reveals that Sishenwan contain multiple active ingredients such as psoralen, isopsoralen, and evodiamine. Mechanism studies indicate that Sishenwan inhibit the inflammatory cascade reactions by regulating the signal network through multiple targets. Sishenwan regulate cellular immunity and restore intestinal immune homeostasis. At the microecological level, Sishenwan promote the intestinal barrier repair through the "microbiota-metabolism-immunity" axis. The current research still needs to be deepened in aspects such as the mining of specific biomarkers for syndromes and the exploration of the collaborative mechanism of traditional Chinese and Western medicine. In the future, a full-chain system covering syndrome differentiation, targeting, and monitoring needs to be constructed for promoting the paradigm transformation of Sishenwan into precision drugs. This review systematically explains the treatment mechanism of Sishenwan regarding the combination of disease and syndrome and its multi-target regulatory characteristics, providing a theoretical basis and transformation direction for the treatment of UC with integrated traditional Chinese and Western medicine.
3.Clinical Application and Pharmacological Mechanism of Sishenwan in Treatment of Ulcerative Colitis: A Review
Keqiu YAN ; Xiaoyu ZHANG ; Sifeng JIA ; Yuyu DUAN ; Zixing QIAN ; Yifan CAI ; Junyi SHEN ; Wenjie XIAO ; Xinkun BAO ; Guangjun SUN ; Aizhen LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):261-270
Ulcerative colitis (UC), a chronic, non-specific inflammatory bowel disease with typical symptoms such as abdominal pain, diarrhea, and bloody stools, demonstrates a high relapse rate and difficulty in curing. Sishenwan, first recorded in Internal Medicine Abstract (Nei Ke Zhai Yao), are a classic prescription for treating diarrhea caused by deficiency of the spleen and kidney Yang. The core therapeutic principle of Sishenwan is warming and tonifying the spleen and kidney, and astringing the intestine and stopping diarrhea. In recent years, Sishenwan have demonstrated distinct advantages in the clinical treatment of UC. The pathogenesis of UC involves multiple factors, including immune dysregulation and gut microbiota imbalance. Although Western medicine is effective in the short term, its side effects, high relapse rate, and resistance associated with long-term use pose substantial challenges. Sishenwan have shown excellent clinical outcomes in the treatment of UC due to deficiency of the spleen and kidney Yang. Modern clinical studies indicate that Sishenwan, used alone or in combination with Western medicine or other Chinese medicine compound prescriptions, significantly improve the clinical efficacy in treating UC due to deficiency of the spleen and kidney Yang. Sishenwan effectively alleviate core symptoms such as mucus, pus, and blood in stools, and persistent abdominal pain, reduce Mayo scores and the relapse rate, and improve patients' quality of life. Research on the material basis reveals that Sishenwan contain multiple active ingredients such as psoralen, isopsoralen, and evodiamine. Mechanism studies indicate that Sishenwan inhibit the inflammatory cascade reactions by regulating the signal network through multiple targets. Sishenwan regulate cellular immunity and restore intestinal immune homeostasis. At the microecological level, Sishenwan promote the intestinal barrier repair through the "microbiota-metabolism-immunity" axis. The current research still needs to be deepened in aspects such as the mining of specific biomarkers for syndromes and the exploration of the collaborative mechanism of traditional Chinese and Western medicine. In the future, a full-chain system covering syndrome differentiation, targeting, and monitoring needs to be constructed for promoting the paradigm transformation of Sishenwan into precision drugs. This review systematically explains the treatment mechanism of Sishenwan regarding the combination of disease and syndrome and its multi-target regulatory characteristics, providing a theoretical basis and transformation direction for the treatment of UC with integrated traditional Chinese and Western medicine.
4.Effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in ADHD rats via Bcl-2/Bax/caspase-3 pathway.
Jing WANG ; Kang-Lin ZHU ; Xin-Qiang NI ; Wen-Hua CAI ; Yu-Ting YANG ; Jia-Qi ZHANG ; Chong ZHOU ; Mei-Jun SHI
China Journal of Chinese Materia Medica 2025;50(3):750-757
This study investigated the effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in rats with attention deficit hyperactivity disorder(ADHD) based on the B-cell lymphoma-2(Bcl-2)/Bcl-2-associated X protein(Bax)/caspase-3 signaling pathway. Twenty-four 3-week-old male spontaneously hypertensive rats(SHR) were randomly divided into a model group, a methylphenidate group(2 mg·kg~(-1)·d~(-1)), and a Rehmanniae Radix Praeparata group(2.4 mg·kg~(-1)·d~(-1)). Age-matched male Wistar Kyoto(WKY) rats were used as the normal control group, with 8 rats in each group. The rats were administered by gavage for 28 days. Body weight and food intake were recorded for each group. The open field test and elevated plus maze test were used to assess hyperactivity and impulsive behaviors. Nissl staining was used to detect changes in striatal neurons and Nissl bodies. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) fluorescence staining was used to detect striatal cell apoptosis. Western blot was employed to detect the expression levels of Bcl-2, Bax, and caspase-3 proteins in the striatum. The results showed that compared with the model group, Rehmanniae Radix Praeparata significantly reduced the total movement distance, average movement speed, and central area residence time in the open field test, and significantly reduced the ratio of open arm entries, open arm stay time, and head dipping in the elevated plus maze test. Furthermore, it increased the number of Nissl bodies in striatal neurons, significantly downregulated the apoptosis index, significantly increased Bcl-2 protein expression and the Bcl-2/Bax ratio, and reduced Bax and caspase-3 protein expression. In conclusion, Rehmanniae Radix Praeparata can reduce hyperactivity and impulsive behaviors in ADHD rats. Its mechanism may be related to the regulation of the Bcl-2/Bax/caspase-3 signaling pathway in the striatum, enhancing the anti-apoptotic capacity of striatal neurons.
Animals
;
Male
;
Apoptosis/drug effects*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Rehmannia/chemistry*
;
Attention Deficit Disorder with Hyperactivity/physiopathology*
;
Signal Transduction/drug effects*
;
Neurons/cytology*
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Humans
;
Corpus Striatum/cytology*
;
Plant Extracts
5.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
6.Clinical Characteristics and Prognostic Analysis of Newly Diagnosed Acute Myeloid Leukemia Patients with NRAS and KRAS Gene Mutations.
Zhang-Yu YU ; Bo CAI ; Yi WANG ; Yang-Yang LEI ; Bing-Xia LI ; Yu-Fang LI ; Yan-Ping SHI ; Jia-Xin CHEN ; Shu-Hong LIU ; Chang-Lin YU ; Mei GUO
Journal of Experimental Hematology 2025;33(3):682-690
OBJECTIVE:
To retrospectively analyze the clinical characteristics, co-mutated genes in newly diagnosed acute myeloid leukemia (AML) patients with NRAS and KRAS gene mutations, and the impact of NRAS and KRAS mutations on prognosis.
METHODS:
The clinical data and next-generation sequencing results of 80 newly diagnosed AML patients treated at our hospital from December 2018 to December 2023 were collected. The clinical characteristics, co-mutated genes of NRAS and KRAS , and the impact of NRAS and KRAS mutations on prognosis in newly diagnosed AML patients were analyzed.
RESULTS:
Among 80 newly diagnosed AML patients, NRAS mutations were detected in 20 cases(25.0%), and KRAS mutations were detected in 9 cases(11.3%). NRAS mutations predominantly occurred at codons 12 and 13 of exon 2, as well as codon 61 of exon 3, while KRAS mutations were most commonly occurred at codons 12 and 13 of exon 2, all of which were missense mutations. There were no statistically significant differences observed in terms of age, sex, white blood cell count(WBC), hemoglobin(Hb), platelet count(PLT), bone marrow blasts, first induction chemotherapy regimen, CR1/CRi1 rates, chromosome karyotype, 2022 ELN risk classification and allogeneic hematopoietic stem cell transplantation(allo-HSCT) among the NRAS mutation group, KRAS mutation group and NRAS/KRAS wild-type group (P >0.05). KRAS mutations were significantly correlated with PTPN11 mutations (r =0.344), whereas no genes significantly associated with NRAS mutations were found. Survival analysis showed that compared to the NRAS/KRAS wild-type group, patients with NRAS mutation had a relatively higher 5-year overall survival (OS) rate and relapse-free survival (RFS) rate, though the differences were not statistically significant (P =0.097, P =0.249). Compared to the NRAS/KRAS wild-type group, patients with KRAS mutation had a lower 5-year OS rate and RFS rate, with no significant differences observed (P =0.275, P =0.442). There was no significant difference in the 5-year RFS rate between the KRAS mutation group and NRAS mutation group (P =0.157), but the 5-year OS rate of patients with KRAS mutation was significantly lower than that of patients with NRAS mutation (P =0.037).
CONCLUSION
In newly diagnosed AML patients, KRAS mutation was significantly correlated with PTPN11 mutation. Compared to patients with NRAS/KRAS wild-type, those with NRAS mutation showed a more favorable prognosis, while patients with KRAS mutation showed a poorer prognosis; however, these differences did not reach statistical significance. Notably, the prognosis of AML patients with KRAS mutation was significantly inferior compared to those with NRAS mutation.
Humans
;
Leukemia, Myeloid, Acute/diagnosis*
;
Mutation
;
Prognosis
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
GTP Phosphohydrolases/genetics*
;
Retrospective Studies
;
Membrane Proteins/genetics*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Aged
7.Mechanism of Ginkgo flavone aglycone in alleviating doxorubicin-induced cardiotoxicity based on transcriptomics and proteomics
Yujie TU ; Ying CAI ; Xueyi CHENG ; Jia SUN ; Jie PAN ; Chunhua LIU ; Yongjun LI ; Yong HUANG ; Lin ZHENG ; Yuan LU
China Pharmacy 2024;35(21):2596-2602
OBJECTIVE To investigate the mechanism by which Ginkgo flavone aglycone (GA) reduces the cardiotoxicity of doxorubicin (DOX) based on transcriptomics and proteomics. METHODS Thirty-six mice were randomly assigned to control group (CON group, tail vein injection of equal volume of physiological saline every other day+daily intragastric administration of an equal volume of physiological saline), DOX group (tail vein injection of 3 mg/kg DOX every other day), and GDOX group (daily intragastric administration of 100 mg/kg GA+tail vein injection of 3 mg/kg DOX every other day), with 12 mice in each group. The administration of drugs/physiological saline was continued for 15 days. Mouse heart tissues were collected for RNA-Seq transcriptomic sequencing and 4D-Label-free quantitative proteomic analysis to screen differentially expressed genes and proteins, which were then subjected to Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. The expression levels of Apelin peptide (Apelin), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) mRNA and protein in mouse heart tissues, as well as the phosphorylation levels of PI3K and Akt proteins, were verified. H9c2 cardiomyocytes were divided into control group (CON group), DOX group (2 μmol/L), and GDOX group (2 μg/mL GA+2 μmol/L DOX) to determine cell viability and the levels of key glycolytic substances in the cells. RESULTS Six common pathways were identified from transcriptomics and proteomics, including the Apelin signaling pathway, the PI3K-Akt signaling pathway, and insulin resistance. Among them, the Apelin and PI3K-Akt signaling pathways were the most enriched in terms of gene numbers. Target validation experiments showed that compared to the CON group, the relative expression of Apelin, PI3K and Akt mRNA and protein levels, as well as the phosphorylation levels of PI3K and Akt proteins, were significantly decreased in the DOX group (P<0.05 or P<0.01). The relative expression of Apelin, PI3K and Akt mRNA and the phosphorylation levels of PI3K and Akt proteins were significantly increased in the GDOX group as compared with the DOX group (P<0.05 or P<0.01). Cellular experiments indicated that compared to the CON group, cell viability in the DOX group was significantly decreased (P<0.05), the relative uptake of glucose and the relative production of pyruvate and lactate were significantly increased (P<0.05), and the relative production of ATP was significantly reduced (P<0.05). Compared to the DOX group, cell viability in the GDOX group was significantly increased (P< 0.05), and the relative production of pyruvate and lactate was significantly reduced (P<0.05). CONCLUSIONS GA may alleviate DOX-induced cardiotoxicity by upregulating the mRNA and protein expression of Apelin, PI3K, and Akt in heart tissues, and regulating glycolytic processes.
8.Clinical characteristics and prognosis of 28 cases of infant acute lymphoblastic leukemia
Yan SHI ; Yu LU ; Ruidong ZHANG ; Yuanyuan ZHANG ; Wei LIN ; Jiaole YU ; Ying WU ; Jia FAN ; Peijing QI ; Pengli HUANG ; Lixiao CAI ; Qian HUANG ; Pan ZHANG ; Yumei SUN ; Yan LIU ; Huyong ZHENG
Chinese Journal of Pediatrics 2024;62(1):49-54
Objective:To analyze the clinical characteristics and prognosis of patients with infant acute lymphoblastic leukemia (IALL).Methods:A retrospective cohort study.Clinical data, treatment and prognosis of 28 cases of IALL who have been treated at Beijing Children′s Hospital, Capital Medical University and Baoding Children′s Hospital from October 2013 to May 2023 were analyzed retrospectively. Based on the results of fluorescence in situ hybridization (FISH), all patients were divided into KMT2A gene rearrangement (KMT2A-R) positive group and KMT2A-R negative group. The prognosis of two groups were compared. Kaplan-Meier method and Log-Rank test were used to analyze the survival of the patients.Results:Among 28 cases of IALL, there were 10 males and 18 females, with the onset age of 10.9 (9.4,11.8) months. In terms of immune classification, 25 cases were B-ALL (89%), while the remaining 3 cases were T-ALL (11%). Most infant B-ALL showed pro-B lymphocyte phenotype (16/25,64%). A total of 22 cases (79%) obtained chromosome karyotype results, of which 7 were normal karyotypes, no complex karyotypes and 15 were abnormal karyotypes were found. Among abnormal karyotypes, there were 4 cases of t (9; 11), 2 cases of t (4; 11), 2 cases of t (11; 19), 1 case of t (1; 11) and 6 cases of other abnormal karyotypes. A total of 19 cases (68%) were positive for KMT2A-R detected by FISH. The KMT2A fusion gene was detected by real-time PCR in 16 cases (57%). A total of 24 patients completed standardized induction chemotherapy and were able to undergo efficacy evaluation, 23 cases (96%) achieved complete remission through induction chemotherapy, 4 cases (17%) died of relapse. The 5-year event free survival rate (EFS) was (46±13)%, and the 5-year overall survival rate (OS) was (73±10)%.The survival time was 31.3 (3.3, 62.5) months. There was no significant statistical difference in 5-year EFS ((46±14)% vs. (61±18)%) and 5-year OS ((64±13)% vs. (86±13)%) between the KMT2A-R positive group (15 cases) and the KMT2A-R negative group (9 cases) ( χ2=1.88, 1.47, P=0.170, 0.224). Conclusions:Most IALL patients were accompanied by KMT2A-R. They had poor tolerance to traditional chemotherapy, the relapse rate during treatment was high and the prognosis was poor.
9.Correlation between Combined Urinary Metal Exposure and Grip Strength under Three Statistical Models: A Cross-sectional Study in Rural Guangxi
Jian Yu LIANG ; Hui Jia RONG ; Xiu Xue WANG ; Sheng Jian CAI ; Dong Li QIN ; Mei Qiu LIU ; Xu TANG ; Ting Xiao MO ; Fei Yan WEI ; Xia Yin LIN ; Xiang Shen HUANG ; Yu Ting LUO ; Yu Ruo GOU ; Jing Jie CAO ; Wu Chu HUANG ; Fu Yu LU ; Jian QIN ; Yong Zhi ZHANG
Biomedical and Environmental Sciences 2024;37(1):3-18
Objective This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength.Results In the multimetal linear regression, Cu (β=-2.119), As (β=-1.318), Sr (β=-2.480), Ba (β=0.781), Fe (β= 1.130) and Mn (β=-0.404) were significantly correlated with grip strength (P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval:-1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn (Pinteractions of 0.003 and 0.018, respectively).Conclusion In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.
10.Effect of Chlorambucil Combined with Ibrutinib on Mantle Cell Lymphoma Cell Line Jeko-1 and Its Related Mechanism
Ni-Na CAI ; Wan-Yi LIU ; Zhi-Qiang LIU ; Jia-Hui GONG ; Yi-Ling LIN ; Ze-Chuan WANG ; Yue-Qin HUANG ; Jian-Xin GUO
Journal of Experimental Hematology 2024;32(1):132-137
Objective:To investigate the toxic effect of chlorambucil combined with ibrutinib on mantle cell lymphoma(MCL)cell line Jeko-1 and its related mechanism.Methods:The MCL cell line Jeko-1 was incubated with different concentrations of chlorambucil or ibrutinib or the combination of the two drugs,respectively.CCK-8 assay was used to detect the proliferation of the cells,and Western blot was used to measure the protein expression levels of BCL-2,caspase-3,PI3K,AKT and P-AKT.Results:After Jeko-1 cells were treated with chlorambucil(3.125,6.25,12.5,25,50 μmol/L)and ibrutinib(3.125,6.25,12.5,25,50 μmol/L)alone for 24,48,72h respectively,the cell proliferation was inhibited in a time-and dose-dependent manner.Moreover,the two drugs were applied in combination at low doses(single drug inhibition rate<50%),and the results showed that the combination of two drugs had a more significant inhibitory effect(all P<0.05).Compared with the control group,the apoptosis rate of the single drug group of chlorambucil(3.125,6.25,12.5,25,50 μmol/L)and ibutinib(3.125,6.25,12.5,25,50 μmol/L)was increased in a dose-dependent manner.The combination of the two drugs at low concentrations(3.125,6.25,12.5 μmol/L)could significantly increase the apoptosis rate compared with the corresponding concentration of single drug groups(all P<0.05).Compared with control group,the protein expression levels of caspase-3 in Jeko-l cells were upregulated,while the protein expression levels of BCL-2,PI3K,and p-AKT/AKT were downregulated after treatment with chlorambucil or ibrutinib alone.The combination of the two drugs could produce a synergistic effect on the expressions of the above-mentioned proteins,and the differences between the combination group and the single drug groups were statistically significant(all P<0.05).Conclusion:Chlorambucil and ibrutinib can promote the apoptosis of MCL cell line Jeko-1,and combined application of the two drugs shows a synergistic effect,the mechanism may be associated with the AKT-related signaling pathways.

Result Analysis
Print
Save
E-mail