1.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
2.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
3.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
4.Astragali Radix Polysaccharide Inhibits Proliferation and Migration of Gastric Cancer Cells by Targeting ID1 and Akt
Peizheng SHI ; Shanshan XIAO ; Xinjiang ZHANG ; Yixiang NIE ; Xianchao WANG ; Jing HUANG ; Jie MEI ; Huaquan LAN ; Tuanyun JI ; Tianyi ZHANG ; Xiaoyong WEI ; Qiaohong YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):96-105
ObjectiveTo explore the regulatory effects and mechanisms of Astragali Radix polysaccharide (APS) on inhibitor of differentiation1 (ID1) and protein kinase B (Akt) in gastric cancer. MethodsImmunohistochemical staining was used to detect the expression of ID1 and Akt in 61 gastric cancer tissue samples and 20 adjacent normal gastric tissue samples. Immunofluorescence was used to detect the localization of ID1 and Akt. The effects of APS at the concentrations of 0.625, 1.25, 2.5, 5, 10, 20 mg·L-1 on the proliferation of gastric cancer MGC-803 cells were examined by the cell counting kit-8(CCK-8) method and the colony formation assay. The target information of APS was retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Platform and Swiss Target Prediction. Keywords such as gastric cancer, gastric tumor, and stomach cancer were searched against GeneCards, UniProt, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) for the screening of gastric cancer-related targets. The online tool jvenn was used to create the Venn diagram to identify the common targets, and STRING and Cytoscape were used to construct the protein-protein interaction network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted via R 4.2.2 to predict the potential roles of APS in the development of gastric cancer. The cell scratch assay was employed to assess the effect of APS on the migration of MGC-803 cells. The protein and mRNA levels of ID1 and Akt in the cells treated with APS were determined by Western blot and Real-time PCR, respectively. ResultsCompared with the adjacent normal gastric tissue, the gastric adenocarcinoma tissue showed increased positive expression of ID1 (χ2 =81.00, P<0.01). Immunofluorescence detection showed that ID1 and Akt were mainly located in the cytoplasm of gastric adenocarcinoma cells. Bioinformatics analysis identified 14 common genes shared between APS and gastric cancer. The average degree of protein-protein interaction network nodes was 14.29. GO and KEGG pathway enrichment results showed that ID1 and Akt were significantly enriched in the Rap1 and phosphatidylinositol-3-kinase (PI3K) /Akt signaling pathways. Cell experiments demonstrated that 5-fluorouracil (0.1 mg·L-1) and APS (10, 20 mg·L-1) groups showed decreased cell proliferation, migration, and colony formation. Compared with the control group, 10, 20 mg·L-1 APS inhibited the proliferation of MGC-803 cells (P<0.01), with 10 mg·L-1 APS demonstrating stronger inhibitory effect. In addition, APS at 10, 20 mg·L-1 inhibited the migration (P<0.01) and colony formation (P<0.05, P<0.01) of MGC-803 cells. Compared with the control group, APS at 10, 20 mg·L-1 down-regulated the protein levels of ID1 (P<0.01) and Akt (P<0.05) and the mRNA levels of ID1 (P<0.05, P<0.01) and Akt (P<0.05, P<0.01) in MGC-803 cells. ConclusionID1 and Akt are highly expressed in the gastric adenocarcinoma tissue, which may be related to the development of gastric cancer. APS can down-regulate the protein and mRNA levels of ID1 and Akt to exert anti-tumor effects, which is expected to provide new therapeutic targets for gastric cancer treatment.
5.Tiaowei Jiannao acupuncture for post-ischemic stroke insomnia: a randomized controlled trial.
Run ZHANG ; Xinwang CHEN ; Mengyu WANG ; Wenming CHU ; Lihua WU ; Jing GAO ; Peidong LIU ; Ce SHI ; Liyuan LIU ; Bingzhen LI ; Miaomiao JI ; Yayong HE
Chinese Acupuncture & Moxibustion 2025;45(10):1405-1413
OBJECTIVE:
To observe the efficacy and safety of Tiaowei Jiannao acupuncture (acupuncture for regulating defensive qi and nourishing brain) for post-ischemic stroke insomnia (PISI).
METHODS:
A total of 96 patients with PISI were randomized into an acupuncture group (32 cases, 1 case was excluded), a medication group (32 cases, 1 case dropped out, 1 case was excluded) and a sham-acupuncture group (32 cases, 1 case dropped out, 1 case was excluded). In the acupuncture group, Tiaowei Jiannao acupuncture was applied at bilateral Shenmai (BL62), Zhaohai (KI6), Hegu (LI4), Taichong (LR3), and Baihui (GV20), Sishencong (EX-HN1), Yintang (GV24+), Shenting (GV24), once a day, 1-day interval was taken after 6-day treatment, for 3 weeks totally. In the medication group, eszopiclone tablet was given orally, 1-3 mg a time, once a day for 3 weeks. In the sham-acupuncture group, non-invasive sham acupuncture was applied, the acupoint selection, frequency and course of treatment were the same as the acupuncture group. Before treatment, after 2,3 weeks of treatment, the scores of Pittsburgh sleep quality index (PSQI), self-rating sleep scale (SRSS), National Institutes of Health Stroke scale (NIHSS), Hamilton depression scale-17 (HAMD-17) were observed; before and after treatment, the sleep parameters were recorded using polysomnography (PSG); and the efficacy and safety were evaluated after treatment in the 3 groups.
RESULTS:
After 2,3 weeks of treatment, the scores of PSQI, HAMD-17 and SRSS in the acupuncture group and the medication group, as well as the SRSS scores in the sham-acupuncture group were decreased compared with those before treatment (P<0.05); after 2 weeks of treatment, the NIHSS score in the acupuncture group was decreased compared with that before treatment (P<0.05); after 3 weeks of treatment, the NIHSS scores in the acupuncture group, the medication group and the sham-acupuncture group were decreased compared with those before treatment (P<0.05). After 3 weeks of treatment, the scores of PSQI, SRSS, HAMD-17 and NIHSS in the acupuncture group and the medication group, as well as the NIHSS score in the sham-acupuncture group were decreased compared with those after 2 weeks of treatment (P<0.05). After 2,3 weeks of treatment, the scores of PSQI, SRSS and HAMD-17 in the acupuncture group and the medication group were lower than those in the sham-acupuncture group (P<0.05), the NIHSS scores in the acupuncture group were lower than those in the medication group and the sham-acupuncture group (P<0.05); after 3 weeks of treatment, HAMD-17 score in the acupuncture group was lower than that in the medication group (P<0.05), the NIHSS score in the medication group was lower than that in the sham-acupuncture group (P<0.05). Compared before treatment, after treatment, the total sleep time was prolonged (P<0.05), the wake after sleep onset, sleep latency, and non-rapid eye movement (NREM) sleep latency were shortened (P<0.05), the sleep efficiency was improved (P<0.05), the number of awakenings was reduced (P<0.05), the percentage of rapid eye movement (REM%) and the percentage of NREM stage 1 (N1%) were decreased (P<0.05), the percentage of NREM stage 2 (N2%) and the percentage of NREM stage 3 (N3%) were increased (P<0.05) in the acupuncture group and the medication group; the sleep latency was shortened in the sham-acupuncture group (P<0.05). After treatment, the PSG indexes in the acupuncture group and the medication group were superior to those in the sham-acupuncture group (P<0.05); in the acupuncture group, the number of awakenings was less than that in the medication group (P<0.05), the REM% and N1% were lower than those in the medication group (P<0.05), the N2% and N3% were higher than those in the medication group (P<0.05). The total effective rate were 93.5% (29/31) and 90.0% (27/30) in the acupuncture group and the medication group respectively, which were higher than 10.0% (3/30) in the sham-acupuncture group (P<0.05). There was no serious adverse events in any of the 3 groups.
CONCLUSION
Tiaowei Jiannao acupuncture improves the insomnia symptoms in patients with ischemic stroke, improves the quality of sleep, increases the deep sleep, promotes the recovery of neurological function, and relieves the depression. It is effective and safe for the treatment of PISI.
Humans
;
Acupuncture Therapy
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Female
;
Middle Aged
;
Aged
;
Acupuncture Points
;
Treatment Outcome
;
Adult
;
Ischemic Stroke/complications*
;
Stroke/complications*
;
Sleep
6.Cold stimulation regulates lipid metabolism and the secretion of exosomes from subcutaneous adipose tissue in mice.
Shuo KE ; Li XU ; Rui-Xue SHI ; Jia-Qi WANG ; Le CUI ; Yuan JI ; Jing LI ; Xiao-Hong JIANG
Acta Physiologica Sinica 2025;77(2):231-240
Cold has been a long-term survival challenge in the evolutionary process of mammals. In response to cold stress, in addition to brown adipose tissue (BAT) dissipating energy as heat through glucose and lipid oxidation to maintain body temperature, cold stimulation can strongly activate thermogenesis and energy expenditure in beige fat cells, which are widely distributed in the subcutaneous layer. However, the effects of cold stimulation on other tissues and systemic lipid metabolism remain unclear. Our previous research indicated that, under cold stress, BAT not only produces heat but also secretes numerous exosomes to mediate BAT-liver crosstalk. Whether subcutaneous fat has a similar mechanism is still unknown. Therefore, this study aimed to investigate the alterations in lipid metabolism across various tissues under cold exposure and to explore whether subcutaneous fat regulates systemic glucose and lipid metabolism via exosomes, thereby elucidating the regulatory mechanisms of lipid metabolism homeostasis under physiological stress. RT-qPCR, Western blot, and H&E staining methods were used to investigate the physiological changes in lipid metabolism in the serum, liver, epididymal white adipose tissue, and subcutaneous fat of mice under cold stimulation. The results revealed that cold exposure significantly enhanced the thermogenic activity of subcutaneous adipose tissue and markedly increased exosome secretion. These exosomes were efficiently taken up by hepatocytes, where they profoundly influenced hepatic lipid metabolism, as evidenced by alterations in the expression levels of key genes involved in lipid synthesis and catabolism pathways. This study has unveiled a novel mechanism by which subcutaneous fat regulates lipid metabolism through exosome secretion under cold stimulation, providing new insights into the systemic regulatory role of beige adipocytes under cold stress and offering a theoretical basis for the development of new therapeutic strategies for obesity and metabolic diseases.
Animals
;
Lipid Metabolism/physiology*
;
Mice
;
Exosomes/metabolism*
;
Cold Temperature
;
Subcutaneous Fat/physiology*
;
Thermogenesis/physiology*
;
Adipose Tissue, Brown/metabolism*
;
Male
7.Effects of drought stress training on polysaccharide accumulation and drought resistance of Codonopsis pilosula.
Lu-Lu WANG ; Xiao-Lin WANG ; Zhe-Yu LIU ; Li-Zhen WANG ; Jia-Tong SHI ; Jiao-Jiao JI ; Jian-Ping GAO ; Yun-E BAI
China Journal of Chinese Materia Medica 2025;50(3):672-681
In order to clarify the effects of drought stress training on the quality and drought resistance of Codonopsis pilosula, this study used PEG to simulate drought stress and employed potting with water control for the drought stress training of C. pilosula plants. The polysaccharide content, secondary metabolites, antioxidant system, and photosynthetic pigment system of C. pilosula after drought stress training were analyzed. The results showed that the content of fructans in the root of C. pilosula increased after two rounds of drought stress treatment, and it was significantly higher than that of the control group. The accumulation of fructans in the root of C. pilosula showed an upward trend during the rehydration treatment. The content of lobetyolin and tangshenoside Ⅰ increased after drought stress treatment compared with that of the control group. The rehydration treatment caused first increasing and then decreasing in the content of lobetyolin, while it had no significant effect on the tangshenoside Ⅰcontent. The content of photosynthetic pigments decreased after drought stress treatment, and it gradually increased during the first round of rehydration and the second round of rehydration. Moreover, the increase was faster in the second round of rehydration than in the first round of rehydration. The content of the peroxidation product malondialdehyde(MDA) and the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) increased after drought stress treatment compared with those of the control group, and they showed a tendency of decreasing during rehydration. Moreover, the decrease was faster in the second round of rehydration than in the first round of rehydration. When the plants of C. pilosula after drought stress training were again subjected to severe drought stress, the wilting rate decreased significantly, and the biomass increases significantly. This study showed that the drought stress training could promote the accumulation of polysaccharides and secondary metabolites in the root of C. pilosula. When encountering drought stress again, C. pilosula plants could quickly regulate the antioxidant system and delay the decomposition of chlorophyll to respond to drought stress. The findings provide a theoretical basis for the ecological cultivation of C. pilosula in arid and semi-arid areas.
Codonopsis/growth & development*
;
Droughts
;
Polysaccharides/metabolism*
;
Stress, Physiological
;
Water/metabolism*
;
Antioxidants/metabolism*
;
Photosynthesis
;
Drought Resistance
8.One-year recovery after lateral retinaculum release combined with chondroplasty in patients with lateral patellar compression syndrome.
Zhen-Long LIU ; Yi-Ting WANG ; Jin-Ming LIN ; Wu-Ji ZHANG ; Jiong-Yuan LI ; Zhi-Hui HE ; Yue-Yang HOU ; Jian-Li GAO ; Wei-Li SHI ; Yu-Ping YANG
Chinese Journal of Traumatology 2025;28(6):462-468
PURPOSE:
Lateral patellar compression syndrome (LPCS) is characterized by a persistent abnormally high stress exerted on the lateral articular surface of the patella due to lateral patellar tilt without dislocation and lateral retinaculum contracture, leading to anterior knee pain. The purpose of this study is to evaluate the efficacy and prognosis of lateral retinaculum release (LRR) combined with chondroplasty in the treatment of LPCS.
METHODS:
This retrospective study evaluated 40 patients who underwent LRR combined with chondroplasty for LPCS between 2020 and 2021. The assessment included improvement in postoperative tenderness and knee joint function. Patients were evaluated using the Lysholm, Tegner, and International Knee Documentation Committee 2000 scoring systems, as well as the visual analog scale, both preoperatively and postoperatively, with the paired comparisons analyzed using a t-test. Additionally, intraoperative observations were made regarding knee joint lesions, including cartilage damage and osteophyte formation, with analysis by the Chi-square test.
RESULTS:
The visual analog scale score for tenderness showed a significant decrease after surgery (p < 0.001). Evaluation of knee joint function also indicated significant improvements, as demonstrated by increased Lysholm, Tegner, and International Knee Documentation Committee 2000 scores postoperatively (p < 0.001, p = 0.011, p < 0.001, respectively). Furthermore, all LPCS patients included in the study presented with cartilage injuries and osteophyte formation. Significant differences were noted in the incidence of cartilage damage and osteophyte formation at different locations within the knee among patients with LPCS.
CONCLUSION
LRR combined with chondroplasty is an effective surgical approach for treating patients with LPCS, with satisfactory recovery observed at the 1-year follow-up. Additionally, the incidence of cartilage damage and osteophyte formation in LPCS patients varies significantly depending on the specific location within the knee joint.
Humans
;
Male
;
Female
;
Retrospective Studies
;
Adult
;
Middle Aged
;
Patella/surgery*
;
Knee Joint/physiopathology*
;
Recovery of Function
;
Young Adult
;
Treatment Outcome
;
Cartilage, Articular/surgery*
;
Adolescent
9.Clinical analysis of nutritional components in children with acute leukemia.
Li-Xia SHI ; Ming-Zhong ZHAO ; Fei-Fei WANG ; Yu-Qian XING ; Hong-Yan JI ; Ping ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(3):300-307
OBJECTIVES:
To assess the changes in body composition and nutritional risks faced by children with different stages of acute leukemia (AL).
METHODS:
Bioelectrical impedance analysis combined with anthropometric measurements was used to detect body composition. This prospective study was conducted from August 2023 to July 2024 at Shandong Provincial Hospital, examining the body composition and physical balance of children with various stages of AL and healthy children.
RESULTS:
The non-fat components of children with AL and healthy children both showed a linear increase with age. In the younger age group, there were no significant differences in body composition between children with AL and healthy children. However, in the older age group, the body composition of children undergoing chemotherapy for AL was significantly lower than that of healthy children (P<0.05), and muscle mass recovered first after the completion of AL chemotherapy. The proportion of children with increased trunk fat in AL children who completed chemotherapy was significantly lower than that in healthy children (P<0.05), while the incidence rate of severe left-right imbalance in body composition was significantly higher (P<0.05). Muscle distribution in children with AL primarily showed insufficient limb and overall muscle mass, whereas healthy children mainly exhibited insufficient upper limb muscle mass.
CONCLUSIONS
The body composition of children with AL varies at different treatment stages, indicating that nutritional status is affected by both the disease itself and the treatment. Early screening can provide a basis for reasonable nutritional intervention.
Humans
;
Child
;
Male
;
Female
;
Child, Preschool
;
Body Composition
;
Prospective Studies
;
Adolescent
;
Leukemia/metabolism*
;
Infant
;
Nutritional Status
;
Acute Disease
;
Electric Impedance
10.Effect of phenytoin and levetiracetam on busulfan blood concentration in children undergoing hematopoietic stem cell transplantation.
Shi-Xi XU ; Guang-Ting ZENG ; Jing-Yu WANG ; Shu-Lan LIU ; Jing LIU ; Bo-Yan DENG ; Ji-Ming LUO ; Jie LIN ; An-Fa WANG
Chinese Journal of Contemporary Pediatrics 2025;27(11):1378-1383
OBJECTIVES:
To study the effect of prophylactic phenytoin (PHT) or levetiracetam (LEV) on busulfan (BU) blood concentration in children undergoing hematopoietic stem cell transplantation.
METHODS:
Pediatric patients conditioned with BU plus cyclophosphamide and fludarabine at the First People's Hospital of Chenzhou from September 2023 to February 2025 were retrospectively included. Patients were grouped by prophylactic antiepileptic regimen into PHT (n=24) and LEV (n=26). BU blood concentrations at the end of infusion (0 hour) and at 1, 2, and 4 hours post-infusion were compared between groups.
RESULTS:
At 0 hour post-infusion, BU blood concentrations did not differ significantly between groups (P>0.05). At 1, 2, and 4 hours post-infusion, BU blood concentrations were higher in the LEV group than in the PHT group (P<0.05). The area under the concentration-time curve from 0 to ∞ (AUC0-∞) was greater in the LEV group (P<0.001), and the attainment rate of AUC0-∞ was higher in the LEV group than in the PHT group (73% vs 21%, P<0.001). No significant differences were observed between groups in time to hematopoietic engraftment or in the incidence of BU-related adverse drug reactions (P>0.05).
CONCLUSIONS
Compared with PHT, LEV prophylaxis is associated with higher BU blood concentration and a higher AUC0-∞ attainment rate. There is no observed difference in BU efficacy or safety between PHT and LEV.
Humans
;
Levetiracetam/therapeutic use*
;
Busulfan/pharmacokinetics*
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Female
;
Child
;
Child, Preschool
;
Phenytoin/pharmacology*
;
Infant
;
Retrospective Studies
;
Anticonvulsants/pharmacology*
;
Adolescent

Result Analysis
Print
Save
E-mail