1.Inhibition of c-Yes Induces Differentiation of HT-29 Human Colon Cancer Stem Cells through Midbody Elongation.
Jessica JUNG ; Sung Chul CHOI ; Han Na LEE ; Gi Yeon HAN ; Chan Wha KIM
Tissue Engineering and Regenerative Medicine 2016;13(3):261-269
Recent research suggests that a small group of cells, named cancer stem cells (CSCs), is responsible for initiating tumor formation, recurrence, and metastasis. c-Yes, a proto-oncogene that is a subfamily of Src family kinase, is often activated in human colon cancer; this implicates c-Yes in the onset and progression of the disease. The objective of this study was to investigate the correlation between c-Yes and CSCs. We performed a sphere formation assay and reverse transcription-polymerase chain reaction for studying the differentiation of HT-29 human colon CSCs. To demonstrate the specific role of c-Yes in CSCs, we performed live cell microscopy and a cell cycle assay. These study shows, for the first time, that c-Yes is enriched in CD133+ CSCs, compared to their CD133− counterparts, and that c-Yes depletion in CD133+ cells induces cell differentiation. Moreover, c-Yes depletion was found to elongate the midbody and increase the proliferation doubling time. This also suggested that the misregulation of microtubules during chromosomal separation causes aneuploidy. Our results suggest that c-Yes may play a crucial role in initiating, maintaining, and driving the tumorigenic property of colon cancer.
Aneuploidy
;
Cell Cycle
;
Cell Differentiation
;
Colon*
;
Colonic Neoplasms*
;
Humans*
;
Microscopy
;
Microtubules
;
Neoplasm Metastasis
;
Neoplastic Stem Cells
;
Phosphotransferases
;
Proto-Oncogenes
;
Recurrence
;
Stem Cells*
2.Human Placenta-Derived ECM Supports Tri-Lineage Differentiation of Human Induced Pluripotent Stem Cells
Angela C. MURCHISON ; Justin J. ODANGA ; Michelle L. TREADWELL ; Erick K. BREATHWAITE ; Jessica R. WEAVER ; Jung Bok LEE
International Journal of Stem Cells 2020;13(3):432-438
Human pluripotent stem cells (hPSCs) hold great promise for future applications in drug discovery and cell therapies. hPSC culture protocols require specific substrates and medium supplements to support cell expansion and lineage specific differentiation. The animal origin of these substrates is a severe limitation when considering the translation of hPSC derivatives to the clinic and in vitro disease modeling. The present study evaluates the use of a human placenta-derived extracellular matrix (ECM) hydrogel, HuGentraⓇ , to support tri-lineage differentiation of human induced pluripotent stem cells (hiPSCs). Lineage-specific embryoid bodies (EBs) were plated onto three separate matrices, and differentiation efficiency was evaluated based on morphology, protein, and gene expression. HuGentra was found to support the differentiation of hiPSCs to all three germ layers: ectodermal, mesodermal, and endodermal lineages. hiPSCs differentiated into neurons, cardiomyocytes, and hepatocytes on HuGentra had similar morphology, protein, and gene expression compared to differentiation on Matrigel or other cell preferred matrices. HuGentra can be considered as a suitable human substrate for hiPSC differentiation.
3.Administration of Alpha(s1)-Casein Hydrolysate Increases Sleep and Modulates GABA(A) Receptor Subunit Expression.
Taddesse YAYEH ; Yea Hyun LEEM ; Kyung Mi KIM ; Jae Chul JUNG ; Jessica SCHWARZ ; Ki Wan OH ; Seikwan OH
Biomolecules & Therapeutics 2018;26(3):268-273
Sleep is the most basic and essential physiological requirement for mental health, and sleep disorders pose potential risks of metabolic and neurodegenerative diseases. Tryptic hydrolysate of α(S1)-casein (α(S1)-CH) has been shown to possess stress relieving and sleep promoting effects. However, the differential effects of α(S1)-CH on electroencephalographic wave patterns and its effects on the protein levels of γ-aminobutyric acid A (GABA(A)) receptor subtypes in hypothalamic neurons are not well understood. We found α(S1)-CH (120, 240 mg/kg) increased sleep duration in mice and reduced sleep-wake cycle numbers in rats. While α(S1)-CH (300 mg/kg) increased total sleeping time in rats, it significantly decreased wakefulness. In addition, electroencephalographic theta (θ) power densities were increased whereas alpha (α) power densities were decreased by α(S1)-CH (300 mg/kg) during sleep-wake cycles. Furthermore, protein expressions of GABA(A) receptor β1 subtypes were elevated in rat hypothalamus by α(S1)-CH. These results suggest α(S1)-CH, through GABA(A) receptor modulation, might be useful for treating sleep disorders.
Animals
;
Caseins*
;
Electroencephalography
;
Hypothalamus
;
Mental Health
;
Mice
;
Neurodegenerative Diseases
;
Neurons
;
Rats
;
Receptors, GABA-A*
;
Sleep Wake Disorders
;
Wakefulness