1.Anti-inflammatory activity of Piper umbellatum Linn. leaf extracts
Jessa Marie D. Natividad ; Gracia Fe B. Yu
Philippine Journal of Health Research and Development 2022;26(4):42-54
Background:
Earlier studies reported the anti-inflammatory activity in several species of Piper, and Piper
umbellatum Linn. leaves containing some phytochemicals that are potent anti-inflammatory agents.
However, there was no thorough investigation on the anti-inflammatory activity of the locally grown P.
umbellatum in the Philippines.
Objective:
The study aimed to determine the anti-inflammatory activity of Piper umbellatum leaves using in
vitro and in vivo assays.
Methodology:
Crude extracts were obtained from P. umbellatum leaves using polar and non-polar solvents.
The anti-inflammatory activities of all crude extracts were determined using the carrageenan-induced paw
edema test in mice and phytochemical analysis. The crude extract with the highest activity was partially
purified using column chromatography. The fractions with similar TLC profile were pooled and tested for antiinflammatory activity. COX-1 and COX-2 enzyme inhibitory activity were determined in pooled fractions that
showed initial activity in animal model.
Results:
Among the crude extracts of P.umbellatum, the crude ethyl acetate extract exhibited a significant
dose-dependent inhibition on paw edema test with doses of 500 mg/kg bw, 1,000 mg/kg bw and 1,500 mg/kg
bw (p<0.05). Among the 20 pooled fractions (PF) collected from the ethyl acetate extract, PF58, PF60 and
PF64 had the highest COX-2 enzyme inhibitions of 83.12 %, 84.78% and 77.47%, respectively (p<0.05). PF60
also exhibited the highest anti-inflammatory activity on paw edema with inhibitions of 62.45% at low dose
(250 mg/kg bw) and 76.10 % at high dose (1,000 mg/kg bw) in mice.
Conclusion
The ethyl acetate extract of P. umbellatum leaves and its fraction-PF60 exhibited a significant
anti-inflammatory activity in in vitro and in vivo assays and contained high amounts of total phenolic and total
flavonoid.
Prostaglandin-Endoperoxide Synthases
;
Carrageenan
;
Inflammation