1.Reimbursement of Digital Therapeutics: Future Perspectives in Korea
Jin Han JU ; Boram SIM ; Jeongeun LEE ; Jin Yong LEE
Korean Circulation Journal 2022;52(4):265-279
Digital health is rapidly growing worldwide and its area is expanding from wellness to treatment due to digital therapeutics (DTx). This study compared DTx in the Korean context with other countries to better understand its political and practical implications. DTx is generally the same internationally, often categorized as software as a medical device. It provides evidence-based therapeutic interventions for medical disabilities and diseases.Abroad, DTx support entailed state subsidies and fundraising and national health insurance coverage. In the case of national health insurance coverage, most cases were applied to mental diseases. Moreover, in Japan, DTx related to hypertension will possibly be under discussion for national health insurance coverage in 2022. In overseas countries, coverage was decided only when the clinical effects were equivalent to those provided by existing technology, and in the UK, real usage data for DTx and associated evaluations were reflected by national health coverage determination. Prices were either determined through closed negotiations with health insurance operating agencies and manufacturers or established based on existing technology. Concerning the current situation, DTx dealing with various diseases including hypertension are expected to be developed near in the future, and the demand for use and compensation will likely increase. Therefore, it is urgent to define and prepare for DTx, relevant support systems, and health insurance coverage listings. Several support systems must be considered, including government subsidies, science/technology funds, and health insurance.
2.Cerebral Hemodynamics and Vascular Reactivity in Mild and Severe Ischemic Rodent Middle Cerebral Artery Occlusion Stroke Models.
Jeongeun SIM ; Areum JO ; Bok Man KANG ; Sohee LEE ; Oh Young BANG ; Chaejeong HEO ; Gil Ja JHON ; Youngmi LEE ; Minah SUH
Experimental Neurobiology 2016;25(3):130-138
Ischemia can cause decreased cerebral neurovascular coupling, leading to a failure in the autoregulation of cerebral blood flow. This study aims to investigate the effect of varying degrees of ischemia on cerebral hemodynamic reactivity using in vivo real-time optical imaging. We utilized direct cortical stimulation to elicit hyper-excitable neuronal activation, which leads to induced hemodynamic changes in both the normal and middle cerebral artery occlusion (MCAO) ischemic stroke groups. Hemodynamic measurements from optical imaging accurately predict the severity of occlusion in mild and severe MCAO animals. There is neither an increase in cerebral blood volume nor in vessel reactivity in the ipsilateral hemisphere (I.H) of animals with severe MCAO. The pial artery in the contralateral hemisphere (C.H) of the severe MCAO group reacted more slowly than both hemispheres in the normal and mild MCAO groups. In addition, the arterial reactivity of the I.H in the mild MCAO animals was faster than the normal animals. Furthermore, artery reactivity is tightly correlated with histological and behavioral results in the MCAO ischemic group. Thus, in vivo optical imaging may offer a simple and useful tool to assess the degree of ischemia and to understand how cerebral hemodynamics and vascular reactivity are affected by ischemia.
Animals
;
Arteries
;
Blood Volume
;
Cerebrovascular Circulation
;
Hemodynamics*
;
Homeostasis
;
Infarction, Middle Cerebral Artery*
;
Ischemia
;
Middle Cerebral Artery*
;
Neurons
;
Neurovascular Coupling
;
Optical Imaging
;
Rodentia*
;
Stroke