1.Association Between Prolonged Closure Time on the Platelet Function Analyzer-200 and Risk of Perioperative Blood Transfusion
Kibum JEON ; Jiwon LEE ; Eunyup LEE ; Jeesoo LEE ; Miyoung KIM ; Han Sung KIM ; Hee Jung KANG ; Young Kyung LEE
Annals of Laboratory Medicine 2019;39(3):330-332
No abstract available.
Blood Platelets
;
Blood Transfusion
2.Association of HLA Genotype and Fulminant Type 1 Diabetes in Koreans.
Soo Heon KWAK ; Yoon Ji KIM ; Jeesoo CHAE ; Cue Hyunkyu LEE ; Buhm HAN ; Jong Il KIM ; Hye Seung JUNG ; Young Min CHO ; Kyong Soo PARK
Genomics & Informatics 2015;13(4):126-131
Fulminant type 1 diabetes (T1DM) is a distinct subtype of T1DM that is characterized by rapid onset hyperglycemia, ketoacidosis, absolute insulin deficiency, and near normal levels of glycated hemoglobin at initial presentation. Although it has been reported that class II human leukocyte antigen (HLA) genotype is associated with fulminant T1DM, the genetic predisposition is not fully understood. In this study we investigated the HLA genotype and haplotype in 11 Korean cases of fulminant T1DM using imputation of whole exome sequencing data and compared its frequencies with 413 participants of the Korean Reference Panel. The HLA-DRB1*04:05-HLA-DQB1*04:01 haplotype was significantly associated with increased risk of fulminant T1DM in Fisher's exact test (odds ratio [OR], 4.11; 95% confidence interval [CI], 1.56 to 10.86; p = 0.009). A histidine residue at HLA-DRbeta1 position 13 was marginally associated with increased risk of fulminant T1DM (OR, 2.45; 95% CI ,1.01 to 5.94; p = 0.054). Although we had limited statistical power, we provide evidence that HLA haplotype and amino acid change can be a genetic risk factor of fulminant T1DM in Koreans. Further large-scale research is required to confirm these findings.
Autoimmunity
;
Exome
;
Genetic Predisposition to Disease
;
Genotype*
;
Haplotypes
;
Hemoglobin A, Glycosylated
;
Histidine
;
HLA Antigens
;
Humans
;
Hyperglycemia
;
Insulin
;
Ketosis
;
Leukocytes
;
Risk Factors
3.Proteome-wide Characterization and Pathophysiology Correlation in Nonischemic Cardiomyopathies
Seonhwa LEE ; Dong-Gi JANG ; Yeon Ju KYOUNG ; Jeesoo KIM ; Eui-Soon KIM ; Ilseon HWANG ; Jong-Chan YOUN ; Jong-Seo KIM ; In-Cheol KIM
Korean Circulation Journal 2024;54(8):468-481
Background and Objectives:
Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue–based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies.
Methods:
Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography–mass spectrometry.Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings.
Results:
The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes.
Conclusions
Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.
4.Proteome-wide Characterization and Pathophysiology Correlation in Nonischemic Cardiomyopathies
Seonhwa LEE ; Dong-Gi JANG ; Yeon Ju KYOUNG ; Jeesoo KIM ; Eui-Soon KIM ; Ilseon HWANG ; Jong-Chan YOUN ; Jong-Seo KIM ; In-Cheol KIM
Korean Circulation Journal 2024;54(8):468-481
Background and Objectives:
Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue–based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies.
Methods:
Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography–mass spectrometry.Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings.
Results:
The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes.
Conclusions
Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.
5.Proteome-wide Characterization and Pathophysiology Correlation in Nonischemic Cardiomyopathies
Seonhwa LEE ; Dong-Gi JANG ; Yeon Ju KYOUNG ; Jeesoo KIM ; Eui-Soon KIM ; Ilseon HWANG ; Jong-Chan YOUN ; Jong-Seo KIM ; In-Cheol KIM
Korean Circulation Journal 2024;54(8):468-481
Background and Objectives:
Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue–based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies.
Methods:
Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography–mass spectrometry.Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings.
Results:
The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes.
Conclusions
Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.
6.Proteome-wide Characterization and Pathophysiology Correlation in Nonischemic Cardiomyopathies
Seonhwa LEE ; Dong-Gi JANG ; Yeon Ju KYOUNG ; Jeesoo KIM ; Eui-Soon KIM ; Ilseon HWANG ; Jong-Chan YOUN ; Jong-Seo KIM ; In-Cheol KIM
Korean Circulation Journal 2024;54(8):468-481
Background and Objectives:
Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue–based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies.
Methods:
Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography–mass spectrometry.Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings.
Results:
The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes.
Conclusions
Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.
7.Adjuvant Chemotherapy in Microsatellite Instability–High Gastric Cancer
Jin Won KIM ; Sung-Yup CHO ; Jeesoo CHAE ; Ji-Won KIM ; Tae-Yong KIM ; Keun-Wook LEE ; Do-Youn OH ; Yung-Jue BANG ; Seock-Ah IM
Cancer Research and Treatment 2020;52(4):1178-1187
Purpose:
Microsatellite instability (MSI) status may affect the efficacy of adjuvant chemotherapy in gastric cancer. In this study, the clinical characteristics of MSI-high (MSI-H) gastric cancer and the predictive value of MSI-H for adjuvant chemotherapy in large cohorts of gastric cancer patients were evaluated. Material and MethodsThis study consisted of two cohorts. Cohort 1 included gastric cancer patients who received curative resection with pathologic stage IB-IIIC. Cohort 2 included patients with MSI-H gastric cancer who received curative resection with pathologic stage II/III. MSI was examined using two mononucleotide markers and three dinucleotide markers.
Results:
Of 359 patients (cohort 1), 41 patients (11.4%) had MSI-H. MSI-H tumors were more frequently identified in older patients (p < 0.001), other histology than poorly cohesive, signet ring cell type (p=0.005), intestinal type (p=0.028), lower third tumor location (p=0.005), and absent perineural invasion (p=0.027). MSI-H status has a tendency of better disease-free survival (DFS) and overall survival (OS) in multivariable analyses (hazard ratio [HR], 0.4; p=0.059 and HR, 0.4; p=0.063, respectively). In the analysis of 162 MSI-H patients (cohort 2), adjuvant chemotherapy showed a significant benefit with respect to longer DFS and OS (p=0.047 and p=0.043, respectively). In multivariable analysis, adjuvant chemotherapy improved DFS (HR, 0.4; p=0.040).
Conclusion
MSI-H gastric cancer had distinct clinicopathologic findings. Even in MSI-H gastric cancer of retrospective cohort, adjuvant chemotherapy could show a survival benefit, which was in contrast to previous prospective studies and should be investigated in a further prospective trial.