4.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
5.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
6.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
Background:
Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans.
Methods:
A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness.
Conclusion
A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide.
7.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
8.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
Background:
Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans.
Methods:
A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness.
Conclusion
A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide.
9.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
10.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
Background:
Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans.
Methods:
A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness.
Conclusion
A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide.

Result Analysis
Print
Save
E-mail