1.Conditioning-induced cardioprotection: Aging as a confounding factor.
Puneet Kaur RANDHAWA ; Anjana BALI ; Jasleen Kaur VIRDI ; Amteshwar Singh JAGGI
The Korean Journal of Physiology and Pharmacology 2018;22(5):467-479
The aging process induces a plethora of changes in the body including alterations in hormonal regulation and metabolism in various organs including the heart. Aging is associated with marked increase in the vulnerability of the heart to ischemia-reperfusion injury. Furthermore, it significantly hampers the development of adaptive response to various forms of conditioning stimuli (pre/post/remote conditioning). Aging significantly impairs the activation of signaling pathways that mediate preconditioning-induced cardioprotection. It possibly impairs the uptake and release of adenosine, decreases the number of adenosine transporter sites and down-regulates the transcription of adenosine receptors in the myocardium to attenuate adenosine-mediated cardioprotection. Furthermore, aging decreases the expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) and subsequent transcription of catalase enzyme which subsequently increases the oxidative stress and decreases the responsiveness to preconditioning stimuli in the senescent diabetic hearts. In addition, in the aged rat hearts, the conditioning stimulus fails to phosphorylate Akt kinase that is required for mediating cardioprotective signaling in the heart. Moreover, aging increases the concentration of Na⁺ and K⁺, connexin expression and caveolin abundance in the myocardium and increases the susceptibility to ischemia-reperfusion injury. In addition, aging also reduces the responsiveness to conditioning stimuli possibly due to reduced kinase signaling and reduced STAT-3 phosphorylation. However, aging is associated with an increase in MKP-1 phosphorylation, which dephosphorylates (deactivates) mitogen activated protein kinase that is involved in cardioprotective signaling. The present review describes aging as one of the major confounding factors in attenuating remote ischemic preconditioning-induced cardioprotection along with the possible mechanisms.
Adenosine
;
Aging*
;
Animals
;
Catalase
;
Heart
;
Metabolism
;
Myocardium
;
Negotiating
;
Oxidative Stress
;
Phosphorylation
;
Phosphotransferases
;
PPAR gamma
;
Protein Kinases
;
Rats
;
Receptors, Purinergic P1
;
Reperfusion Injury
2.Animals models of spinal cord contusion injury
Renuka VERMA ; Jasleen Kaur VIRDI ; Nirmal SINGH ; Amteshwar Singh JAGGI
The Korean Journal of Pain 2019;32(1):12-21
Spinal cord contusion injury is one of the most serious nervous system disorders, characterized by high morbidity and disability. To mimic spinal cord contusion in humans, various animal models of spinal contusion injury have been developed. These models have been developed in rats, mice, and monkeys. However, most of these models are developed using rats. Two types of animal models, i.e. bilateral contusion injury and unilateral contusion injury models, are developed using either a weight drop method or impactor method. In the weight drop method, a specific weight or a rod, having a specific weight and diameter, is dropped from a specific height on to the exposed spinal cord. Low intensity injury is produced by dropping a 5 g weight from a height of 8 cm, moderate injury by dropping 10 g weight from a height of 12.5–25 mm, and high intensity injury by dropping a 25 g weight from a height of 50 mm. In the impactor method, injury is produced through an impactor by delivering a specific force to the exposed spinal cord area. Mild injury is produced by delivering 100 ± 5 kdyn of force, moderate injury by delivering 200 ± 10 kdyn of force, and severe injury by delivering 300 ± 10 kdyn of force. The contusion injury produces a significant development of locomotor dysfunction, which is generally evident from the 0–14(th) day of surgery and is at its peak after the 28–56th day. The present review discusses different animal models of spinal contusion injury.
Animals
;
Body Weight
;
Cervical Vertebrae
;
Contusions
;
Female
;
Haplorhini
;
Humans
;
Locomotion
;
Methods
;
Mice
;
Models, Animal
;
Nervous System Diseases
;
Rats
;
Spinal Cord Injuries
;
Spinal Cord