1.Solid-phase microextraction of endogenous metabolites from intact tissue validated using a Biocrates standard reference method kit
Will-Runshan JIANG ; Karol JAROCH ; Janusz PAWLISZYN
Journal of Pharmaceutical Analysis 2023;13(1):55-62
Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the endogenous metabolome.In this study,solid-phase microextraction(SPME)fibers were used to monitor changes in endogenous compounds in homogenized and intact ovine lung tissue.Following SPME,a Biocrates AbsoluteIDQ assay was applied to make a downstream targeted metab-olomics analysis and confirm the advantages of in vivo SPME metabolomics.The AbsoluteIDQ kit enabled the targeted analysis of over 100 metabolites via solid-liquid extraction and SPME.Statistical analysis revealed significant differences between conventional liquid extractions from homogenized tissue and SPME results for both homogenized and intact tissue samples.In addition,principal component analysis revealed separated clustering among all the three sample groups,indicating changes in the metabolome due to tissue homogenization and the chosen sample preparation method.Furthermore,clear differences in free metabolites were observed when extractions were performed on the intact and homogenized tissue using identical SPME procedures.Specifically,a direct comparison showed that 47 statistically distinct metabolites were detected between the homogenized and intact lung tissue samples(P<0.05)using mixed-mode SPME fibers.These changes were probably due to the disruptive homogenization of the tissue.This study's findings highlight both the importance of sample preparation in tissue-based metabolomics studies and SPME's unique ability to perform minimally invasive extractions without tissue biopsy or homogenization while providing broad metabolite coverage.
2.Time-course monitoring of in vitro biotransformation reaction via solid-phase microextraction-ambient mass spectrometry approaches
Jaroch KAROL ; Pawliszyn JANUSZ
Journal of Pharmaceutical Analysis 2022;12(1):186-191
The solid-phase microextraction technique quantifies analytes without considerably affecting the sample composition.Herein,a proof-of-concept study was conducted to demonstrate the use of coated probe electrospray ionization(coated-PESI)and coated blade spray(CBS)as ambient mass spectrometry ap-proaches for monitoring drug biotransformation.The ability of these methods was investigated for monitoring the dephosphorylation of a prodrug,combretastatin A4 phosphate(CA4P),into its active form,combretastatin A4(CA4),in a cell culture medium supplemented with fetal bovine serum.The CBS spot analysis was modified to achieve the same extraction efficiency as protein precipitation and ob-tained results in 7 min.Because coated-PESI performs extraction without consuming any samples,it is the preferred technique in the case of a limited sample volume.Although coated-PESI only extracts small quantities of analytes,it uses the desorption solvent volume of 5-10 pL,resulting in high sensitivity,thus allowing the detection of compounds after only 1 min of extraction.The biotransformation of CA4P into CA4 via phosphatases occurs within the simple matrix,and the proposed sample preparation techniques are suitable for monitoring the biotransformation.
3.One extraction tool for in vitro-in vivo extrapolation?SPME-based metabolomics of in vitro 2D,3D,and in vivo mouse melanoma models
Jaroch KAROL ; Taczyńska PAULINA ; Czechowska MARTA ; Bogusiewicz JOANNA ; ?uczykowski KAMIL ; Burlikowska KATARZYNA ; Bojko BARBARA
Journal of Pharmaceutical Analysis 2021;11(5):667-674
Solid phase microextraction(SPME)in combination with high-resolution mass spectrometry was employed for the determination of metabolomic profile of mouse melanoma growth within in vitro 2D,in vitro 3D,and in vivo models.Such multi-model approach had never been investigated before.Due to the low-invasiveness of SPME,it was possible to perform time-course analysis,which allowed building time profile of biochemical reactions in the studied material.Such approach does not require the multiplication of samples as subsequent analyses are performed from the very same cell culture or from the same individual.SPME already reduces the number of animals required for experiment;therefore,it is with good concordance with the 3Rs rule(replacement,reduction,and refinement).Among tested models,the largest number of compounds was found within the in vitro 2D cell culture model,while in vivo and in vitro 3D models had the lowest number of detected compounds.These results may be connected with a higher metabolic rate,as well as lower integrity of the in vitro 2D model compared to the in vitro 3D model resulting in a lower number of compounds released into medium in the latter model.In terms of in vitro-in vivo extrapolation,the in vitro 2D model performed more similar to in vivo model compared to in vitro 3D model;however,it might have been due to the fact that only compounds secreted to medium were investigated.Thus,in further experiments to obtain full metabolome infor-mation,the intraspheroidal assessment or spheroid dissociation would be necessary.