2.Recent research on tofacitinib in the treatment of pediatric rheumatic diseases.
Shi-Hai ZHOU ; Ya-Qun XIONG ; Ya CHEN
Chinese Journal of Contemporary Pediatrics 2022;24(4):447-453
Tofacitinib is a Janus kinase inhibitor and can block the Janus kinase-signal transducer and activator of transcription signal transduction pathway and reduce the production and release of a variety of cytokines. It has great potential in the treatment of various rheumatic diseases with a rapid onset of action and can reduce corticosteroid dependence and related adverse events. The therapeutic effect of tofacitinib in adult patients has been confirmed, and it has been increasingly used in pediatric patients in recent years. This article reviews the clinical application of tofacitinib in the treatment of pediatric autoimmune diseases.
Adult
;
Child
;
Humans
;
Janus Kinases/metabolism*
;
Piperidines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*
;
Pyrimidines/therapeutic use*
;
Rheumatic Diseases/drug therapy*
3.Effects of genistein on expressions of jak1 kinase and inteleukin-4 in lung of guinea pigs with bronchial asthma.
Xiu-feng ZHANG ; Zhen-hua HE ; Xiao-wu TAN
Chinese Journal of Applied Physiology 2009;25(3):328-348
Animals
;
Asthma
;
drug therapy
;
metabolism
;
Genistein
;
pharmacology
;
therapeutic use
;
Guinea Pigs
;
Interleukin-4
;
genetics
;
metabolism
;
Janus Kinase 1
;
genetics
;
metabolism
;
Lung
;
metabolism
;
Male
;
Protein Kinase Inhibitors
;
pharmacology
;
therapeutic use
4.Mechanism of sophocarpine in treating experimental colitis in mice.
Jian-mei ZHANG ; Ya-bi ZHU ; Xing DENG ; Chang-xiong WANG ; Shuang-mei LUAN ; Yue-xiang CHEN
China Journal of Chinese Materia Medica 2015;40(15):3081-3087
To study the preventive effect of sophocarpine (Soc) on dextran sulfate sodium (DSS)-induced colitis in mice, in order to analyze the influence of Soc on toll like receptor 4 (TLR4)/mitogen-activated protein kinases (MAPKs) and janus tyrosine kinase 2 signal transducer and activator of transcription 3 (JAK2/STAT3) signal pathways in mice intestinal tissues. The mice was given 2.5% DSS for 6 days to induce the acute colitis model. The Soc-treated group was intraperitoneally injected with sophocarpine 30 mg · kg(-1) · d(-1) since the day before the experiment to the end. The disease activity index (DAI) was assessed everyday, and the colonic morphology and histological damage were observed with HE staining. The mRNA expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were detected by real-time RT-PCR. The changes in key protein kinase p38 mitogen-activated protein kinase (p38MAPK), c-Jun NH2-terminal protein kinase1/2 (JNK1/2), extracellular signal-regulated kinase1/2 (ERK1/2), JAK2, STAT3 in TLR4/MAPKs and JAK2/STAT3 signaling pathways were detected by western blot. The result showed that the model group showed statistical significance in body weight, DAI, colon length and histopathological changes compared with the normal group (P <0.05); however, the Soc-treated group showed significant improvements in the above indexes compared with the model group (P <0.05). TNF-α, IL-1β and IL-6 in the model group was significantly higher than that in the normal group (P <0.05), but lowered in the Soc-treated group to varying degrees (P <0.05). In the normal group, the expressions of TLR4 and the phosphorylation of P38, JNK1/2, JAK2, STAT3 were at low levels; in the model group, the phosphorylation of P38, JNK1/2, JAK2, STAT3 increased; the Soc-treated group showed a decrease in TLR4 expression compared with the model group, with notable declines in the phosphorylation of TLR4, P38, JNK1/2, JAK2, STAT3. These findings indicate that Soc can inhibit TLR4/MAPKs, K2/STAT3 signaling pathway activation, reduce the expression of proinflammatory cytokines TNF-α, IL-1β and IL-6 and relieve inflammatory reactions, so as to effectively prevent experimental colitis.
Alkaloids
;
pharmacology
;
therapeutic use
;
Animals
;
Colitis
;
drug therapy
;
immunology
;
pathology
;
Cytokines
;
genetics
;
Janus Kinase 2
;
antagonists & inhibitors
;
physiology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Phosphorylation
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
physiology
;
Toll-Like Receptor 4
;
antagonists & inhibitors
;
physiology
5.Guidelines for the management of myeloproliferative neoplasms.
Chul Won CHOI ; Soo Mee BANG ; Seongsoo JANG ; Chul Won JUNG ; Hee Jin KIM ; Ho Young KIM ; Soo Jeong KIM ; Yeo Kyeoung KIM ; Jinny PARK ; Jong Ho WON
The Korean Journal of Internal Medicine 2015;30(6):771-788
Polycythemia vera, essential thrombocythemia, and primary myelofibrosis are collectively known as 'Philadelphia-negative classical myeloproliferative neoplasms (MPNs).' The discovery of new genetic aberrations such as Janus kinase 2 (JAK2) have enhanced our understanding of the pathophysiology of MPNs. Currently, the JAK2 mutation is not only a standard criterion for diagnosis but is also a new target for drug development. The JAK1/2 inhibitor, ruxolitinib, was the first JAK inhibitor approved for patients with intermediate- to high-risk myelofibrosis and its effects in improving symptoms and survival benefits were demonstrated by randomized controlled trials. In 2011, the Korean Society of Hematology MPN Working Party devised diagnostic and therapeutic guidelines for Korean MPN patients. Subsequently, other genetic mutations have been discovered and many kinds of new drugs are now under clinical investigation. In view of recent developments, we have revised the guidelines for the diagnosis and management of MPN based on published evidence and the experiences of the expert panel. Here we describe the epidemiology, new genetic mutations, and novel therapeutic options as well as diagnostic criteria and standard treatment strategies for MPN patients in Korea.
Antineoplastic Agents/*therapeutic use
;
Asian Continental Ancestry Group/genetics
;
Humans
;
Janus Kinase 2/*antagonists & inhibitors/genetics/metabolism
;
Molecular Targeted Therapy
;
Mutation
;
Myeloproliferative Disorders/diagnosis/drug therapy/enzymology/ethnology/genetics
;
Protein Kinase Inhibitors/*therapeutic use
;
Republic of Korea/epidemiology
;
Risk Factors
;
Signal Transduction/drug effects
;
Treatment Outcome
6.Efficacy and safety of tofacitinib for active rheumatoid arthritis with an inadequate response to methotrexate or disease-modifying antirheumatic drugs: a meta-analysis of randomized controlled trials.
Gwan Gyu SONG ; Sang Cheol BAE ; Young Ho LEE
The Korean Journal of Internal Medicine 2014;29(5):656-663
BACKGROUND/AIMS: The aim of this study was to assess the efficacy and safety of tofacitinib (5 and 10 mg twice daily) in patients with active rheumatoid arthritis (RA). METHODS: A systematic review of randomized controlled trials (RCTs) that examined the efficacy and safety of tofacitinib in patients with active RA was performed using the Medline, Embase, and Cochrane Controlled Trials Register databases as well as manual searches. RESULTS: Five RCTs, including three phase-II and two phase-III trials involving 1,590 patients, met the inclusion criteria. The three phase-II RCTs included 452 patients with RA (144 patients randomized to 5 mg of tofacitinib twice daily, 156 patients randomized to 10 mg of tofacitinib twice daily, and 152 patients randomized to placebo) who were included in this meta-analysis. The American College of Rheumatology 20% response rate was significantly higher in the tofacitinib 5- and 10-mg groups than in the control group (relative risk [RR], 2.445; 95% confidence interval [CI], 1.229 to 4.861; p = 0.011; and RR, 2.597; 95% CI, 1.514 to 4.455; p = 0.001, respectively). The safety outcomes did not differ between the tofacitinib 5- and 10-mg groups and placebo groups with the exception of infection in the tofacitinib 10-mg group (RR, 2.133; 95% CI, 1.268 to 3.590; p = 0.004). The results of two phase-III trials (1,123 patients) confirmed the findings in the phase-II studies. CONCLUSIONS: Tofacitinib at dosages of 5 and 10 mg twice daily was found to be effective in patients with active RA that inadequately responded to methotrexate or disease-modifying antirheumatic drugs, and showed a manageable safety profile.
Antirheumatic Agents/administration & dosage/adverse effects/*therapeutic use
;
Arthritis, Rheumatoid/*drug therapy
;
Clinical Trials, Phase II as Topic
;
Clinical Trials, Phase III as Topic
;
Humans
;
Janus Kinases/antagonists & inhibitors
;
Methotrexate/therapeutic use
;
Piperidines/administration & dosage/adverse effects/*therapeutic use
;
Protein Kinase Inhibitors/administration & dosage/adverse effects/therapeutic use
;
Pyrimidines/administration & dosage/adverse effects/*therapeutic use
;
Pyrroles/administration & dosage/adverse effects/*therapeutic use
;
Randomized Controlled Trials as Topic
;
Treatment Outcome
7.Inhibition of Janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice.
Young Bin OH ; Min AHN ; Sang Myeong LEE ; Hyoung Won KOH ; Sun Hwa LEE ; Suhn Hee KIM ; Byung Hyun PARK
Experimental & Molecular Medicine 2013;45(5):e23-
Recent studies have documented that Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) pathway can modulate the apoptotic program in a myocardial ischemia/reperfusion (I/R) model. To date, however, limited studies have examined the role of JAK3 on myocardial I/R injury. Here, we investigated the potential effects of pharmacological JAK3 inhibition with JANEX-1 in a myocardial I/R model. Mice were subjected to 45 min of ischemia followed by varying periods of reperfusion. JANEX-1 was injected 1 h before ischemia by intraperitoneal injection. Treatment with JANEX-1 significantly decreased plasma creatine kinase and lactate dehydrogenase activities, reduced infarct size, reversed I/R-induced functional deterioration of the myocardium and reduced myocardial apoptosis. Histological analysis revealed an increase in neutrophil and macrophage infiltration within the infarcted area, which was markedly reduced by JANEX-1 treatment. In parallel, in in vitro studies where neutrophils and macrophages were treated with JANEX-1 or isolated from JAK3 knockout mice, there was an impairment in the migration potential toward interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), respectively. Of note, however, JANEX-1 did not affect the expression of IL-8 and MCP-1 in the myocardium. The pharmacological inhibition of JAK3 might represent an effective approach to reduce inflammation-mediated apoptotic damage initiated by myocardial I/R injury.
Animals
;
Apoptosis/drug effects
;
Cell Movement/drug effects
;
Chemokines/pharmacology
;
Heart Function Tests/drug effects
;
Inflammation/pathology
;
Janus Kinase 3/*antagonists & inhibitors/metabolism
;
Macrophages/drug effects/metabolism/pathology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Myocardial Reperfusion Injury/drug therapy/*enzymology/physiopathology/*prevention & control
;
Myocardium/enzymology/pathology
;
Myocytes, Cardiac/drug effects/metabolism/pathology
;
Neutrophils/drug effects/metabolism/pathology
;
Quinazolines/pharmacology/therapeutic use