2.Mechanism of sophocarpine in treating experimental colitis in mice.
Jian-mei ZHANG ; Ya-bi ZHU ; Xing DENG ; Chang-xiong WANG ; Shuang-mei LUAN ; Yue-xiang CHEN
China Journal of Chinese Materia Medica 2015;40(15):3081-3087
To study the preventive effect of sophocarpine (Soc) on dextran sulfate sodium (DSS)-induced colitis in mice, in order to analyze the influence of Soc on toll like receptor 4 (TLR4)/mitogen-activated protein kinases (MAPKs) and janus tyrosine kinase 2 signal transducer and activator of transcription 3 (JAK2/STAT3) signal pathways in mice intestinal tissues. The mice was given 2.5% DSS for 6 days to induce the acute colitis model. The Soc-treated group was intraperitoneally injected with sophocarpine 30 mg · kg(-1) · d(-1) since the day before the experiment to the end. The disease activity index (DAI) was assessed everyday, and the colonic morphology and histological damage were observed with HE staining. The mRNA expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were detected by real-time RT-PCR. The changes in key protein kinase p38 mitogen-activated protein kinase (p38MAPK), c-Jun NH2-terminal protein kinase1/2 (JNK1/2), extracellular signal-regulated kinase1/2 (ERK1/2), JAK2, STAT3 in TLR4/MAPKs and JAK2/STAT3 signaling pathways were detected by western blot. The result showed that the model group showed statistical significance in body weight, DAI, colon length and histopathological changes compared with the normal group (P <0.05); however, the Soc-treated group showed significant improvements in the above indexes compared with the model group (P <0.05). TNF-α, IL-1β and IL-6 in the model group was significantly higher than that in the normal group (P <0.05), but lowered in the Soc-treated group to varying degrees (P <0.05). In the normal group, the expressions of TLR4 and the phosphorylation of P38, JNK1/2, JAK2, STAT3 were at low levels; in the model group, the phosphorylation of P38, JNK1/2, JAK2, STAT3 increased; the Soc-treated group showed a decrease in TLR4 expression compared with the model group, with notable declines in the phosphorylation of TLR4, P38, JNK1/2, JAK2, STAT3. These findings indicate that Soc can inhibit TLR4/MAPKs, K2/STAT3 signaling pathway activation, reduce the expression of proinflammatory cytokines TNF-α, IL-1β and IL-6 and relieve inflammatory reactions, so as to effectively prevent experimental colitis.
Alkaloids
;
pharmacology
;
therapeutic use
;
Animals
;
Colitis
;
drug therapy
;
immunology
;
pathology
;
Cytokines
;
genetics
;
Janus Kinase 2
;
antagonists & inhibitors
;
physiology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Phosphorylation
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
physiology
;
Toll-Like Receptor 4
;
antagonists & inhibitors
;
physiology
3.Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway.
Ling-Na KONG ; Xiang LIN ; Cheng HUANG ; Tao-Tao MA ; Xiao-Ming MENG ; Chao-Jie HU ; Qian-Qian WANG ; Yan-Hui LIU ; Qing-Ping SHI ; Jun LI
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):122-130
Macrophages show significant heterogeneity in function and phenotype, which could shift into different populations of cells in response to exposure to various micro-environmental signals. These changes, also termed as macrophage polarization, of which play an important role in the pathogenesis of many diseases. Numerous studies have proved that Hesperidin (HDN), a traditional Chinese medicine, extracted from fruit peels of the genus citrus, play key roles in anti-inflammation, anti-tumor, anti-oxidant and so on. However, the role of HDN in macrophage polarization has never been reported. Additional, because of its poor water solubility and bioavailability. Our laboratory had synthesized many hesperidin derivatives. Among them, hesperidin derivatives-12 (HDND-12) has better water solubility and bioavailability. So, we evaluated the role of HDND-12 in macrophage polarization in the present study. The results showed that the expression of Arginase-1 (Arg-1), interleukin-10 (IL-10), transforming growth factor β (TGF-β) were up-regulated by HDND-12, whereas the expression of inducible Nitric Oxide Synthase (iNOS) was down-regulated in LPS- and IFN-γ-treated (M1) RAW264.7 cells. Moreover, the expression of p-JAK2 and p-STAT3 were significantly decreased after stimulation with HDND-12 in M1-like macrophages. More importantly, when we taken AG490 (inhibitor of JAK2/STAT3 signaling), the protein levels of iNOS were significantly reduced in AG490 stimulation group compare with control in LPS, IFN-γ and HDND-12 stimulation cells. Taken together, these findings indicated that HDND-12 could prevent polarization toward M1-like macrophages, at least in part, through modulating JAK2/STAT3 pathway.
Animals
;
Cytokines
;
genetics
;
metabolism
;
Enzyme Inhibitors
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Hesperidin
;
chemistry
;
pharmacology
;
Inflammation
;
genetics
;
metabolism
;
Janus Kinase 2
;
antagonists & inhibitors
;
metabolism
;
Macrophages
;
drug effects
;
immunology
;
metabolism
;
Medicine, Chinese Traditional
;
Mice
;
Molecular Structure
;
Phosphorylation
;
drug effects
;
RAW 264.7 Cells
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
drug effects
4.Guidelines for the management of myeloproliferative neoplasms.
Chul Won CHOI ; Soo Mee BANG ; Seongsoo JANG ; Chul Won JUNG ; Hee Jin KIM ; Ho Young KIM ; Soo Jeong KIM ; Yeo Kyeoung KIM ; Jinny PARK ; Jong Ho WON
The Korean Journal of Internal Medicine 2015;30(6):771-788
Polycythemia vera, essential thrombocythemia, and primary myelofibrosis are collectively known as 'Philadelphia-negative classical myeloproliferative neoplasms (MPNs).' The discovery of new genetic aberrations such as Janus kinase 2 (JAK2) have enhanced our understanding of the pathophysiology of MPNs. Currently, the JAK2 mutation is not only a standard criterion for diagnosis but is also a new target for drug development. The JAK1/2 inhibitor, ruxolitinib, was the first JAK inhibitor approved for patients with intermediate- to high-risk myelofibrosis and its effects in improving symptoms and survival benefits were demonstrated by randomized controlled trials. In 2011, the Korean Society of Hematology MPN Working Party devised diagnostic and therapeutic guidelines for Korean MPN patients. Subsequently, other genetic mutations have been discovered and many kinds of new drugs are now under clinical investigation. In view of recent developments, we have revised the guidelines for the diagnosis and management of MPN based on published evidence and the experiences of the expert panel. Here we describe the epidemiology, new genetic mutations, and novel therapeutic options as well as diagnostic criteria and standard treatment strategies for MPN patients in Korea.
Antineoplastic Agents/*therapeutic use
;
Asian Continental Ancestry Group/genetics
;
Humans
;
Janus Kinase 2/*antagonists & inhibitors/genetics/metabolism
;
Molecular Targeted Therapy
;
Mutation
;
Myeloproliferative Disorders/diagnosis/drug therapy/enzymology/ethnology/genetics
;
Protein Kinase Inhibitors/*therapeutic use
;
Republic of Korea/epidemiology
;
Risk Factors
;
Signal Transduction/drug effects
;
Treatment Outcome
5.Role of angiotensin II and JAK2 signal pathway in transdifferentation of renal tubular cells in mice after acute ischemic followed by reperfusion.
Tang JIANG ; Qing-song ZHOU ; Lei PI ; Bin HUANG
Chinese Journal of Pathology 2009;38(7):466-471
OBJECTIVETo investigate the effect of angiotensin (Ang)II and its Janns-activated kinase-2 (JAK2) signal pathway in transdifferentiation of renal tubular cells under the challenge of acute ischemic reperfusion injury.
METHODSModels of acute ischemic reperfusion injury were established and the level of local AngII, a key element of renin-angiotensin system (RAS), in kidney was measured using radioimmunity technique. The expression of alpha-smooth muscle actin (alpha-SMA), a phenotype of mesenchymal cells, was detected by RT-PCR and immunohistochemistry methods. Renal tubule cells (NRK-52E) were cultured with various concentration of AngII, followed by blocking of PD123319, AngII receptor 2 antagonist, and AG490, an inhibitor of JAK2 signal pathway.
RESULTSAngII of kidney tissue increased immediately after acute ischemic-reperfusion injury, in time dependent fashion. Expression of alpha-SMA in renal tubule cells was found at 48 hours after ischemic-reperfusion injury and in NRK-52E cells treated by high concentration of AngII and was dose and time dependent. The peak of alpha-SMA expression was seen after 30 minute treatment at the dose of 10(-9) mol/L, which was interrupted by both of PD123319 and AG490.
CONCLUSIONSTransdifferentiation of renal tubular epithelial cells occurs under acute ischemic-reperfusion injury. Local renin-angiotensin system may play a role in the transdifferentiation of TEC through AT2 receptor and its JAK2 signal pathway.
Actins ; genetics ; metabolism ; Angiotensin II ; administration & dosage ; metabolism ; pharmacology ; Angiotensin II Type 1 Receptor Blockers ; pharmacology ; Animals ; Cell Differentiation ; drug effects ; Cell Line ; Dose-Response Relationship, Drug ; Imidazoles ; pharmacology ; Janus Kinase 2 ; antagonists & inhibitors ; Kidney Tubules ; cytology ; metabolism ; Male ; Pyridines ; pharmacology ; RNA, Messenger ; metabolism ; Rats ; Rats, Wistar ; Renin-Angiotensin System ; Reperfusion Injury ; metabolism ; pathology ; Signal Transduction ; drug effects ; Tyrphostins ; pharmacology