1.Immunohistochemistry of Janus Kinase 1 (JAK1) Expression in Vitiligo
Asmaa Gaber ABDOU ; Alaa MARAEE ; Hossam YASSIEN ; Mona SARHAN
Journal of Pathology and Translational Medicine 2018;52(6):363-368
BACKGROUND: Vitiligo is a chronic autoimmune disease in which the destruction of melanocytes causes white spots on the affected skin. Janus kinase (JAK) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK–signal transducer and activator of transcription pathway. The aim of the present study is to explore the possible role of JAK1 in the pathogenesis of vitiligo using immunohistochemical methods. METHODS: The current study was conducted in a sample of 39 patients who presented with vitiligo and 22 healthy individuals who were age and sex matched as a control group. We used immunohistochemistry to evaluate JAK1 status (intensity and distribution) and assess the percentage of residual melanocytes using human melanoma black 45 (HMB45). RESULTS: Intense and diffuse JAK1 expression was significantly more likely to indicate vitiliginous skin compared to normal skin (p < .001). Strong and diffuse JAK1 expression was associated with short disease duration, female sex, and lower percentage of melanocytes (detected by HMB45) (p < .05). CONCLUSIONS: JAK1 may be involved in the pathogenesis of vitiligo, as indicated by intense and diffuse expression compared to control and association with lower percentage of melanocytes detected by HMB45 immunostaining.
Autoimmune Diseases
;
Dental Caries
;
Female
;
Humans
;
Immunohistochemistry
;
Janus Kinase 1
;
Melanocytes
;
Melanoma
;
Phosphotransferases
;
Skin
;
Transducers
;
Tyrosine
;
Vitiligo
2.Inhibitive effect of exogenous carbon monoxide-releasing molecules 2 on the activation of Janus kinase/signal transducer and activator of transcription pathway in sepsis.
Bing-wei SUN ; Ping ZHANG ; Xiang-qian ZOU ; Geng-sheng SHI ; Yan SUN
Chinese Journal of Burns 2010;26(2):100-103
OBJECTIVETo study the inhibitive effect of exogenous carbon monoxide-releasing molecules 2 (CORM-2) on the activation of Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway in sepsis.
METHODSRAW264.7 cells were divided into normal control group, LPS group (10 mg/mL LPS, the same concentration below), LPS + inactive CORM-2 (iCORM-2) group, LPS + 50 mmol/L CORM-2 group, and LPS + 100 mmol/L CORM-2 group. TNF-alpha level in the supernatant was determined with ELISA, and the phosphorylation levels of JAK1 and JAK3 were determined with Western blot. Thirty-five male BALB/c mice were divided into normal control group, cecal ligation and puncture (CLP) group, CLP + iCORM-2 (8.0 mg/kg) group and CLP + CORM-2 group (8.0 mg/kg) according to the random number table. Mice in CLP + CORM-2 group were treated the same as mice in CLP group except for administration of CORM-2 after CLP. The plasma levels of TNF-alpha, IL-1beta, and the phosphorylation levels of JAK1, JAK3 in liver tissue were determined with ELISA 24 hours post CLP. Data were processed with t test.
RESULTSCompared with that of normal control group [(1.9 +/- 0.3) pg/mL], the TNF-alpha level [(8.2 +/- 2.7) pg/mL, t = 2.844, P < 0.01] and phosphorylation levels of JAK1, JAK3 in LPS group increased significantly; while TNF-alpha levels in LPS + 50 mmol/L CORM-2 and LPS + 100 mmol/L CORM-2 groups decreased obviously as compared with that of LPS group [(5.7 +/- 1.4), (3.2 +/- 0.9) pg/mL, with t value respectively 2.104 and 2.363, P values all below 0.05], and it was the same with phosphorylation levels of JAK1, JAK3 in a dose-dependent manner. Compared with those of normal control group, plasma levels of TNF-alpha and IL-1beta and phosphorylation levels of JAK1, JAK3 in liver tissue significantly increased in CLP group (with t value respectively 2.916 and 2.796, and P values all below 0.05); while plasma levels of TNF-alpha and IL-1beta and the phosphorylation levels of JAK1, JAK3 in liver tissue decreased significantly in CLP + CORM-2 group (with t value respectively 2.115 and 2.398, and P values all below 0.05).
CONCLUSIONSExogenous CORM-2 can obviously inhibit the phosphorylation of JAKs molecules and then inhibit the activation of JAK/STAT signal pathway in sepsis, and decrease the expression of downstream cytokines to effectively prevent cascade reaction in the inflammatory response after severe infection.
Animals ; Carbon Monoxide ; pharmacology ; Cells, Cultured ; Interleukin-1beta ; blood ; Janus Kinase 1 ; metabolism ; Janus Kinase 3 ; metabolism ; Male ; Mice ; Mice, Inbred BALB C ; Organometallic Compounds ; pharmacology ; Phosphorylation ; Sepsis ; metabolism ; Signal Transduction ; Tumor Necrosis Factor-alpha ; blood
3.Study on the mechanism of arsenic trioxide inhibiting NB4 cells proliferation.
Guo-Zi YANG ; Wei LI ; Ke-Wei MA ; Zhong-Hua DU ; Ling LI
Chinese Journal of Hematology 2009;30(6):390-393
OBJECTIVETo explore the molecular mechanisms of arsenic trioxide (As2O3) inhibiting NB4 cells proliferation.
METHODSThe Janus kinase 1 (JAK1) protein level and its phosphorylation level in NB4 cells was detected by Western blots. NB4 cells were transfected with JAK1 siRNA or JAK1 plasmid to make JAK1 gene silenced or overexpressed. The inhibition of NB4 cells proliferation was measured by MTT assay and Trypan blue exclusion respectively. The variation of phosphorylation level of JAK1 and the cell cycle inhibitor P21 were determined by Western blots.
RESULTSJAK1 protein was expressed stably in NB4 cells, with no phosphorylation. The phosphorylation of JAK1 was enhanced after the NB4 cells treated with As2O3. After NB4 cells transfected with JAK1 siRNA, the expression level of JAK1 was obviously lower than that of in the non-specific siRNA group and blank control group. The effect of As2O3 inhibiting NB4 cells proliferation was weaker in the JAK1 siRNA transfected group. The inhibiting rate of 4 micromol/L As2O3 on NB4 cells proliferation of JAK1 siRNA group was 49.12% being lower than that of the non-specific siRNA group (74.58%) and control group (72.33%). After NB4 cells transfected with JAK1 plasmid, the JAK1 expression level in wild-type and mutant type plasmid groups were significantly higher than those in the empty plasmid group, moreover the effect of As2O3 inhibiting proliferation was stronger in wild-type plasmid group. The inhibiting rate of 4 micromol/L As2O3 on NB4 cells proliferation of wild-type plasmid group was 69.53% being higher than that of the mutant type JAK1 plasmid group (37.26%) and the empty plasmid group (39.61%). The expression level of P21 was up-regulated after the NB4 cells treated with As2O3.
CONCLUSIONJAK1 is expressed stably in NB4 cells, but has no activity. Arsenic trioxide inhibits the proliferation of NB4 cells through activating the JAK1. P21 is up-regulated after arsenic trioxide activated the JAK1 to inhibit the proliferation of NB4 cells.
Apoptosis ; drug effects ; Arsenicals ; pharmacology ; Cell Proliferation ; drug effects ; Humans ; Janus Kinase 1 ; genetics ; metabolism ; Oxides ; pharmacology ; Signal Transduction ; drug effects ; Tumor Cells, Cultured
4.Associations of JAK1 gene polymorphisms with allergic rhinitis in Chinese Han populations.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(19):1713-1722
OBJECTIVE:
The aim of this study was to investigate the association of JAK1 polymorphisms with allergic rhinitis in China Han population.
METHOD:
A total of 450 patients with AR and 615 healthy subjects as control were genotyped for the presence of three single nucleotide polymorphisms using polymerase chain reaction restriction fragment length polymorphism (PGR-RFLP) analysis of DNA extracted from blood samples.
RESULT:
All control subjects were in Hardy-Weinberg equilibrium, but high frequencies of JAK1 the homozygous rs310241 CC genotype were observed in AR patients compared to controls (P < 0.05). The results also revealed that there was no association between the rest of two investigated SNPs and AR.
CONCLUSION
Our results suggested that JAK1 gene rs310241 CC genotype was associated with patients with AR.
Asian Continental Ancestry Group
;
genetics
;
China
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
Janus Kinase 1
;
genetics
;
Polymerase Chain Reaction
;
Polymorphism, Restriction Fragment Length
;
Polymorphism, Single Nucleotide
;
Rhinitis, Allergic
;
genetics
5.Maxing Shigan Decoction improves lung and colon tissue damage caused by influenza virus infection through JAK1/2-STAT1 signaling pathway.
Cheng ZHAO ; Xiang-Gang ZHANG ; Chun-Jing CHEN ; Xiao-Qi WANG ; Kai-Qin CHEN ; Chang LIU ; Rong XIAO ; Li HE ; Mei-Hong PENG ; Fang-Guo LU
China Journal of Chinese Materia Medica 2022;47(19):5306-5315
Based on Janus kinase 1/2-signal transducer and activator of transcription 1(JAK1/2-STAT1) signaling pathway, this study explored the immune mechanism of Maxing Shigan Decoction in alleviating the lung tissue and colon tissue damage in mice infected with influenza virus. The influenza virus infection was induced in mice by nasal drip of influenza virus. The normal group, model group, oseltamivir group, antiviral granule group, and Maxing Shigan Decoction group were designed. After intragastric administration of corresponding drugs or normal saline for 3 or 7 days, the body mass was measured, and lung index, spleen index, and thymus index were calculated. Based on hematoxylin-eosin(HE) staining, the pathological changes of lung tissue and colon tissue were observed. Enzyme-linked immunosorbent assay(ELISA) was used to detect serum levels of inflammatory factors interleukin-8(IL-8) and interferon-γ(IFN-γ), Western blot and real-time quantitative polymerase chain reaction(RT-qPCR) to determine the protein and mRNA levels of JAK1, JAK2, STAT1, interferon regulatory factor 9(IRF9), and IFN-γ in lung tissue and colon tissue. The results showed that after 3 and 7 days of administration, the body mass, spleen index, and thymus index were lower(P<0.05 or P<0.01), and the lung index was higher(P<0.01) in the model group than in the normal group. Moreover, the model group showed congestion, edema, and infiltration of a large number of lymphocytes and macrophages in the lung tissue, irregular structure of colon mucosa, ulceration and shedding of epithelial cells, and infiltration of a large number of inflammatory cells. The model group had higher levels of serum IFN-γ(P<0.01), higher protein and mRNA expression of JAK1, JAK2, STAT1, IRF9, IFN-γ in lung tissue(P<0.05 or P<0.01), higher level of JAK2 protein in colon tissue(P<0.01), and higher protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) than the normal group. Compared with the model group, Maxing Shigan Decoction group had high body mass, spleen index, and thymus index(P<0.05 or P<0.01), low lung index(P<0.05 or P<0.01), and significant alleviation of pathological injury in lung and colon. Moreover, lower serum level of IFN-γ(P<0.05 or P<0.01), protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue(P<0.05 or P<0.01), JAK2 protein level in colon tissue(P<0.01), and protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) were observed in the Maxing Shigan Decoction group than in the model group. After 3 days of administration, the level of serum IL-8 in the model group was significantly higher than that in the normal group(P<0.01), and the level in the Maxing Shigan Decoction group was significantly reduced(P<0.01). In conclusion, Maxing Shigan Decoction can significantly up-regulate body mass, spleen index, and thymus index, down-regulate lung index, reduce the levels of IL-8 and IFN-γ, and down-regulate protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue and protein and mRNA levels of JAK2, STAT1, and IRF9 in colon tissue, and alleviate pathological damage of lung tissue and colon tissue. The mechanism is the likelihood that it inhibits the activation of JAK1/2-STAT1 signaling pathway to alleviate the damage to lung and colon tissue damage.
Mice
;
Animals
;
Humans
;
Janus Kinase 1/genetics*
;
STAT1 Transcription Factor/genetics*
;
Influenza, Human
;
Interleukin-8
;
Signal Transduction
;
Orthomyxoviridae Infections
;
Interferon-gamma
;
Lung
;
RNA, Messenger
;
Orthomyxoviridae
;
Colon
6.The anti-proliferative and anti-inflammatory mechanisms of JAK1 inhibitor SHR0302 versus Ruxolitinib in SET2 cell line and primary cells.
Ai Ying YANG ; Jin Qin LIU ; Ya Nan CAI ; Mei Yun FANG ; Lin YANG ; Meng CHEN ; Bing LI ; Zhi Jian XIAO
Chinese Journal of Hematology 2019;40(12):1003-1007
Objective: To explore the effects and molecular mechanism of the selective JAK1inhibitor SHR0302 and Ruxolitinib on myeloproliterative neoplasms (MPN) cell line SET2 and primary cells in vitro. Methods: Cell proliferation was detected by CCK8 kit. Colony forming experiment was conducted to evaluate erythroid burst colony formation unit (BFU-E) of primary cells from MPN patients. Multi-factor kits were used to detect six inflammatory cytokines. Phosphorylated proteins of Jak-Stat signaling pathway were tested by Western blot. Results: At different time points after treated with SHR0302 and Ruxolitinib, the inhibition of cell proliferation was dose dependent by both drugs (P<0.01) . The inhibitory rates of 2.5 μmol/L SHR0302 and 0.1 μmol/L Ruxolitinib on SET2 cells for 72 h were comparable, i.e. (59.94±0.60) % and (64.00±0.66) %, respectively, suggesting that the inhibitory effect of SHR0302 was weaker than that of Ruxolitinib. Similarly, both SHR0302 and Ruxolitinib inhibited BFU-E in primary marrow cells from MPN patients in a dose-dependent manner. SHR0302 1.0 μmol/L produced similar degree of inhibition compared to Ruxolitinib 0.2 μmol/L. Except IL-12, the expression of other 5 cytokines (IL-6, TNF-α, IL-1β, IL-2, IL-8) was significantly inhibited by 1.6 μmol/L SHR0302 in SET2 cells at 24 h (P<0.01) , while Ruxolitinib 1.0 μmol/L had the same effect. Several phosphorylated molecules of Jak-Stat signaling pathway were significantly inhibited by SHR0302 in SET2 cells only for 3 h. P-stat1 (Tyr701) , p-stat3 (Tyr705) were down-regulated when treated with SHR0302 1.0 μmol/L (P<0.05) , p-jak1 (tyr1022/1023) and p-stat5 (Tyr694) were inhibited at 5.0 μmol/L (P<0.05) . Ruxolitinib significantly inhibited the downstream STAT protein at 0.1 μmol/L. Again, the inhibitory effect of SHR0302 on protein expression was weaker than that of Ruxolitinib. Conclusion: SHR0302 can effectively inhibit the proliferation of MPN cell line and patients' primary cells, as well as the expression of inflammatory factors. The molecular mechanism is possibly related to the down-regulation of phosphorylated proteins of Jak-Stat signaling pathway. Overall, the anti-proliferative and anti-inflammatory effects of SHR0302 are weaker than those of Ruxolitinib.
Anti-Inflammatory Agents
;
Cell Line
;
Cell Proliferation/drug effects*
;
Histone-Lysine N-Methyltransferase
;
Humans
;
Janus Kinase 1
;
Nitriles
;
Pyrazoles
;
Pyrimidines
;
Sulfuric Acids
7.Effects of genistein on expressions of jak1 kinase and inteleukin-4 in lung of guinea pigs with bronchial asthma.
Xiu-feng ZHANG ; Zhen-hua HE ; Xiao-wu TAN
Chinese Journal of Applied Physiology 2009;25(3):328-348
Animals
;
Asthma
;
drug therapy
;
metabolism
;
Genistein
;
pharmacology
;
therapeutic use
;
Guinea Pigs
;
Interleukin-4
;
genetics
;
metabolism
;
Janus Kinase 1
;
genetics
;
metabolism
;
Lung
;
metabolism
;
Male
;
Protein Kinase Inhibitors
;
pharmacology
;
therapeutic use
8.Afatinib Reduces STAT6 Signaling of Host ARPE-19 Cells Infected with Toxoplasma gondii.
Zhaoshou YANG ; Hye Jin AHN ; Young Hoon PARK ; Ho Woo NAM
The Korean Journal of Parasitology 2016;54(1):31-38
Specific gene expressions of host cells by spontaneous STAT6 phosphorylation are major strategy for the survival of intracellular Toxoplasma gondii against parasiticidal events through STAT1 phosphorylation by infection provoked IFN-γ. We determined the effects of small molecules of tyrosine kinase inhibitors (TKIs) on the growth of T. gondii and on the relationship with STAT1 and STAT6 phosphorylation in ARPE-19 cells. We counted the number of T. gondii RH tachyzoites per parasitophorous vacuolar membrane (PVM) after treatment with TKIs at 12-hr intervals for 72 hr. The change of STAT6 phosphorylation was assessed via western blot and immunofluorescence assay. Among the tested TKIs, Afatinib (pan ErbB/EGFR inhibitor, 5 µM) inhibited 98.0% of the growth of T. gondii, which was comparable to pyrimethamine (5 µM) at 96.9% and followed by Erlotinib (ErbB1/EGFR inhibitor, 20 µM) at 33.8% and Sunitinib (PDGFR or c-Kit inhibitor, 10 µM) at 21.3%. In the early stage of the infection (2, 4, and 8 hr after T. gondii challenge), Afatinib inhibited the phosphorylation of STAT6 in western blot and immunofluorescence assay. Both JAK1 and JAK3, the upper hierarchical kinases of cytokine signaling, were strongly phosphorylated at 2 hr and then disappeared entirely after 4 hr. Some TKIs, especially the EGFR inhibitors, might play an important role in the inhibition of intracellular replication of T. gondii through the inhibition of the direct phosphorylation of STAT6 by T. gondii.
Antiparasitic Agents/pharmacology
;
Blotting, Western
;
Cell Line
;
Enzyme Activation/drug effects
;
Fluorescent Antibody Technique
;
Humans
;
Janus Kinase 1/metabolism
;
Janus Kinase 3/metabolism
;
Phosphorylation/drug effects
;
Quinazolines/*pharmacology
;
STAT6 Transcription Factor/*metabolism
;
Signal Transduction/*drug effects
;
Toxoplasma/*drug effects/physiology
;
Toxoplasmosis/physiopathology
9.Gene expression profile in K562 cells treated by interferon alpha.
Bin WU ; Shu-Yun ZHOU ; Xiao-Li LIU
Journal of Experimental Hematology 2005;13(5):746-750
To study the gene expression profile in K562 cells treated by IFN-alpha, so as to provide some information about the potential mechanism of IFN-alpha curing CML, the changes of gene expression were examined with the DNA array in K562 cells before and after treatment with IFN-alpha. The results showed that no gene expression difference more than 2.5 times in K562 cells was found on the first day after treatment with IFN-alpha (200 U/ml), then the genes significant expression difference increased step by step, and reached the peak on the forth day. In all examined genes, 97 genes significant expression difference were detected, 86.60% (84/97) gene of interest out of those gene were up-regulated, 13.40% (13/97) were down-regulated. In these 97 genes with significant expression difference, cell regulator protein genes accounted to 23.71% (23/97), surface receptor genes 14.43% (14/97), oncogenes and tumor suppressors 11.34% (11/97), extracellular communication proteins 9.28% (9/97), cell adhesion molecular genes 8.25% (8/97) and the other genes accounted to 32.99% (32/97). JAK1 was up-regulated to 3.78 times, JAK2 to 15.43, STAT1 and STAT2 were up-regulated to 11.98 and 8.11 times respectively, and these genes are components of JAK-STAT pathway. The number of different genes began to decrease on the fifth day. There were still 9 genes that had expression difference more than 3 times on the twenty-first day. It is concluded that when concentration of IFN-alpha was 200 U/ml, the forth day should be considered as the best time to examine change of gene expression in K562 cells treated by IFN-alpha. IFN-alpha realizes its biological functions through the JAK-STAT pathways and it may be one of the mechanisms for curing CML with IFN-alpha.
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Interferon-alpha
;
pharmacology
;
Janus Kinase 1
;
genetics
;
K562 Cells
;
Oligonucleotide Array Sequence Analysis
;
STAT1 Transcription Factor
;
genetics
;
STAT2 Transcription Factor
;
genetics
10.The mechanism of signal transduction during vascular smooth muscle cell proliferation induced by autoantibodies against angiotensin AT1 receptor from hypertension.
Yan-xiang SUN ; Hai-yan ZHANG ; Yu-miao WEI ; Feng ZHU ; Min WANG ; Yu-hua LIAO
Chinese Medical Journal 2008;121(1):43-48
BACKGROUNDAutoantibodies against angiotensin AT1 receptor have been discovered in patients with preeclampsia or malignant hypertension. Some studies have demonstrated that the autoantibodies are involved in the immunopathogenesis of hypertension and have an agonist effect similar to angiotensin II.
METHODSAutoantibodies against AT1 receptor were purified from sera of patients with primary hypertension by affinity chromatography. Proliferation of cultured rat vascular smooth muscle cells was detected by bromodeoxyuridine incorporation and activation of signalling molecules detected by Western blotting and electrophoretic mobility shift assay.
RESULTSThe AT1-RAb caused a significant proliferation similar to the Ang II during first 24 hours. The levels of nuclear factor-kappaB (NF-kappaB), phosphorylated JAK2, phosphorylated STAT1 (pSTAT1) and phosphorylated STAT3 (pSTAT3) molecules were increased in response to the autoantibodies. In contrast, the activations of NF-kappaB and JAK-STAT were blocked by losartan, pyrrolidinedithiocarbamate (a specific inhibitor of NF-kappaB) and AG490 (a specific inhibitor of the JAK2 tyrosine kinase). The expressions of NF-kappaB, pSTAT1 and pSTAT3 reached peak levels at different times. Moreover, the relative densities of electrophoretic bands showed that activation of pSTAT3 was more significant than STAT1 induced by AT1-RAb.
CONCLUSIONSThese results suggest that the autoantibodies against AT1 receptor have an agonist effect similar to Ang II in proliferation of VSMCs and the NF-kappaB and JAK-STAT proteins play essential roles. The effect is different from Ang II in that STAT3 is the main downstream activating molecule in JAK-STAT signalling pathway.
Animals ; Autoantibodies ; immunology ; Cell Proliferation ; Humans ; Hypertension ; immunology ; Janus Kinase 2 ; physiology ; Muscle, Smooth, Vascular ; cytology ; NF-kappa B ; physiology ; Rats ; Rats, Wistar ; Receptor, Angiotensin, Type 1 ; immunology ; STAT3 Transcription Factor ; physiology ; Signal Transduction ; physiology