2.Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila.
Michael F WANGLER ; Lawrence T REITER ; Georgianna ZIMM ; Jennifer TRIMBLE-MORGAN ; Jane WU ; Ethan BIER
Protein & Cell 2011;2(7):554-563
Alzheimer's disease (AD) pathogenesis is characterized by senile plaques in the brain and evidence of oxidative damage. Oxidative stress may precede plaque formation in AD; however, the link between oxidative damage and plaque formation remains unknown. Presenilins are transmembrane proteins in which mutations lead to accelerated plaque formation and early-onset familial Alzheimer's disease. Presenilins physically interact with two antioxidant enzymes thiol-specific antioxidant (TSA) and proliferation-associated gene (PAG) of the peroxiredoxin family. The functional consequences of these interactions are unclear. In the current study we expressed a presenilin transgene in Drosophila wing and sensory organ precursors of the fly. This caused phenotypes typical of Notch signaling loss-of-function mutations. We found that while expression of TSA or PAG alone produced no phenotype, co-expression of TSA and PAG with presenilin led to an enhanced Notch loss-of-function phenotype. This phenotype was more severe and more penetrant than that caused by the expression of Psn alone. In order to determine whether these phenotypes were indeed affecting Notch signaling, this experiment was performed in a genetic background carrying an activated Notch (Abruptex) allele. The phenotypes were almost completely rescued by this activated Notch allele. These results link peroxiredoxins with the in vivo function of Presenilin, which ultimately connects two key pathogenetic mechanisms in AD, namely, antioxidant activity and plaque formation, and raises the possibility of a role for peroxiredoxin family members in Alzheimer's pathogenesis.
Amino Acid Sequence
;
Animals
;
Drosophila
;
metabolism
;
physiology
;
Drosophila Proteins
;
metabolism
;
Molecular Sequence Data
;
Peroxiredoxins
;
chemistry
;
genetics
;
metabolism
;
Presenilins
;
chemistry
;
metabolism
;
Receptors, Notch
;
metabolism
;
Sequence Alignment
;
Signal Transduction
3.The splicing factor Prp31 is essential for photoreceptor development in Drosophila.
Payal RAY ; Xiaoyan LUO ; Elizabeth J RAO ; Amina BASHA ; Elvin A WOODRUFF ; Jane Y WU
Protein & Cell 2010;1(3):267-274
Retinitis pigmentosa is a leading cause of blindness and a progressive retinal disorder, affecting millions of people worldwide. This disease is characterized by photoreceptor degeneration, eventually leading to complete blindness. Autosomal dominant (adRP) has been associated with mutations in at least four ubiquitously expressed genes encoding pre-mRNA splicing factors-Prp3, Prp8, Prp31 and PAP1. Biological function of adRP-associated splicing factor genes and molecular mechanisms by which mutations in these genes cause cell-type specific photoreceptor degeneration in humans remain to be elucidated. To investigate the in vivo function of these adRP-associated splicing factor genes, we examined Drosophila in which expression of fly Prp31 homolog was down-regulated. Sequence analyses show that CG6876 is the likely candidate of Drosophila melanogaster Prp31 homolog (DmPrp31). Predicted peptide sequence for CG6876 shows 57% similarity to the Homo sapiens Prp31 protein (HsPrp31). Reduction of the endogenous Prp31 by RNAi-mediated knockdown specifically in the eye leads to reduction of eye size or complete absence of eyes with remarkable features of photoreceptor degeneration and recapitulates the bimodal expressivity of human Prp31 mutations in adRP patients. Such transgenic DmPrp31RNAi flies provide a useful tool for identifying genetic modifiers or interacting genes for Prp31. Expression of the human Prp31 in these animals leads to a partial rescue of the eye phenotype. Our results indicate that the Drosophila CG6876 is the fly ortholog of mammalian Prp31 gene.
Amino Acid Sequence
;
Animals
;
Animals, Genetically Modified
;
Base Sequence
;
DNA Primers
;
genetics
;
Drosophila Proteins
;
antagonists & inhibitors
;
genetics
;
physiology
;
Drosophila melanogaster
;
genetics
;
growth & development
;
physiology
;
Eye Abnormalities
;
genetics
;
Eye Proteins
;
antagonists & inhibitors
;
genetics
;
physiology
;
Gene Knockdown Techniques
;
Genes, Insect
;
Humans
;
Molecular Sequence Data
;
Pancreatitis-Associated Proteins
;
Photoreceptor Cells, Invertebrate
;
physiology
;
RNA Interference
;
RNA Splicing
;
Sequence Homology, Amino Acid
4.Candidate Mycobacterium tuberculosis genes targeted by human microRNAs.
Weirui GUO ; Jiong-Tang LI ; Xiao PAN ; Liping WEI ; Jane Y WU
Protein & Cell 2010;1(5):419-421
5.AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth.
Kun ZHU ; Xiaoping CHEN ; Jianghong LIU ; Haihong YE ; Li ZHU ; Jane Y WU
Protein & Cell 2013;4(2):155-161
Down syndrome cell adhesion molecule (DSCAM) acts as a netrin-1 receptor and mediates attractive response of axons to netrin-1 in neural development. However, the signaling mechanisms of netrin-DSCAM remain unclear. Here we report that AMP-activated protein kinase (AMPK) interacts with DSCAM through its γ subunit, but does not interact with DCC (deleted in colorectal cancer), another major receptor for netrin-1. Netrin-treatment of cultured cortical neurons leads to increased phosphorylation of AMPK. Both AMPK mutant with dominant-negative effect and AMPK inhibitor can significantly suppress netrin-1 induced neurite outgrowth. Together, these findings demonstrate that AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth. Our study uncovers a previously unknown component, AMPK, in netrin-DSCAM signaling pathway.
AMP-Activated Protein Kinases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Animals
;
Cell Adhesion Molecules
;
genetics
;
metabolism
;
Cells, Cultured
;
HEK293 Cells
;
Humans
;
Mice
;
Nerve Growth Factors
;
pharmacology
;
Netrin-1
;
Neurites
;
physiology
;
Neurons
;
cytology
;
drug effects
;
metabolism
;
Phosphorylation
;
Protein Binding
;
Protein Kinase Inhibitors
;
pharmacology
;
RNA Interference
;
RNA, Small Interfering
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Signal Transduction
;
drug effects
;
Transfection
;
Tumor Suppressor Proteins
;
pharmacology
6.Currently Clinical Views on Genetics of Wilson's Disease.
Chen CHEN ; Bo SHEN ; Jia-Jia XIAO ; Rong WU ; Sarah Jane Duff CANNING ; Xiao-Ping WANG
Chinese Medical Journal 2015;128(13):1826-1830
OBJECTIVEThe objective of this study was to review the research on clinical genetics of Wilson's disease (WD).
DATA SOURCESWe searched documents from PubMed and Wanfang databases both in English and Chinese up to 2014 using the keywords WD in combination with genetic, ATP7B gene, gene mutation, genotype, phenotype.
STUDY SELECTIONPublications about the ATP7B gene and protein function associated with clinical features were selected.
RESULTSWilson's disease, also named hepatolenticular degeneration, is an autosomal recessive genetic disorder characterized by abnormal copper metabolism caused by mutations to the copper-transporting gene ATP7B. Decreased biliary copper excretion and reduced incorporation of copper into apoceruloplasmin caused by defunctionalization of ATP7B protein lead to accumulation of copper in many tissues and organs, including liver, brain, and cornea, finally resulting in liver disease and extrapyramidal symptoms. It is the most common genetic neurological disorder in the onset of adolescents, second to muscular dystrophy in China. Early diagnosis and medical therapy are of great significance for improving the prognosis of WD patients. However, diagnosis of this disease is usually difficult because of its complicated phenotypes. In the last 10 years, an increasing number of clinical studies have used molecular genetics techniques. Improved diagnosis and prediction of the progression of this disease at the molecular level will aid in the development of more individualized and effective interventions, which is a key to transition from molecular genetic research to the clinical study.
CONCLUSIONSClinical genetics studies are necessary to understand the mechanism underlying WD at the molecular level from the genotype to the phenotype. Clinical genetics research benefits newly emerging medical treatments including stem cell transplantation and gene therapy for WD patients.
Adenosine Triphosphatases ; genetics ; Cation Transport Proteins ; genetics ; Copper-transporting ATPases ; Hepatolenticular Degeneration ; genetics ; Humans ; Phenotype
7.USP33, a new player in lung cancer, mediates Slit-Robo signaling.
Pushuai WEN ; Ruirui KONG ; Jianghong LIU ; Li ZHU ; Xiaoping CHEN ; Xiaofei LI ; Yongzhan NIE ; Kaichun WU ; Jane Y WU
Protein & Cell 2014;5(9):704-713
Ubiquitin specific protease 33 (USP33) is a multifunctional protein regulating diverse cellular processes. The expression and role of USP33 in lung cancer remain unexplored. In this study, we show that USP33 is down-regulated in multiple cohorts of lung cancer patients and that low expression of USP33 is associated with poor prognosis. USP33 mediates Slit-Robo signaling in lung cancer cell migration. Downregulation of USP33 reduces the protein stability of Robo1 in lung cancer cells, providing a previously unknown mechanism for USP33 function in mediating Slit activity in lung cancer cells. Taken together, USP33 is a new player in lung cancer that regulates Slit-Robo signaling. Our data suggest that USP33 may be a candidate tumor suppressor for lung cancer with potential as a prognostic marker.
Blotting, Western
;
Cell Line, Tumor
;
Cell Movement
;
genetics
;
physiology
;
Cohort Studies
;
Down-Regulation
;
Female
;
Gene Expression Regulation, Neoplastic
;
HEK293 Cells
;
Humans
;
Immunohistochemistry
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Kaplan-Meier Estimate
;
Lung Neoplasms
;
genetics
;
metabolism
;
pathology
;
Male
;
Middle Aged
;
Nerve Tissue Proteins
;
metabolism
;
Prognosis
;
RNA Interference
;
Receptors, Immunologic
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Signal Transduction
;
genetics
;
physiology
;
Ubiquitin Thiolesterase
;
genetics
;
metabolism
8.Troubleshooting Arterial-Phase MR Images of Gadoxetate Disodium-Enhanced Liver.
Jimi HUH ; So Yeon KIM ; Benjamin M YEH ; Seung Soo LEE ; Kyoung Won KIM ; En Haw WU ; Z Jane WANG ; Li Qin ZHAO ; Wei Chou CHANG
Korean Journal of Radiology 2015;16(6):1207-1215
Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field.
Angiography
;
Arteries/anatomy & histology
;
Contrast Media/*chemistry
;
Gadolinium DTPA/*chemistry
;
Humans
;
Liver/*radiography
;
*Magnetic Resonance Imaging
9.Dscam mutation leads to hydrocephalus and decreased motor function.
Yiliang XU ; Haihong YE ; Yan SHEN ; Qi XU ; Li ZHU ; Jianghong LIU ; Jane Y WU
Protein & Cell 2011;2(8):647-655
The nervous system is one of the most complicated organ systems in invertebrates and vertebrates. Down syndrome cell adhesion molecule (DSCAM) of the immunoglobulin (Ig) superfamily is expressed widely in the nervous system during embryonic development. Previous studies in Drosophila suggest that Dscam plays important roles in neural development including axon branching, dendritic tiling and cell spacing. However, the function of the mammalian DSCAM gene in the formation of the nervous system remains unclear. Here, we show that Dscam ( del17 ) mutant mice exhibit severe hydrocephalus, decreased motor function and impaired motor learning ability. Our data indicate that the mammalian DSCAM gene is critical for the formation of the central nervous system.
Animals
;
Cell Adhesion Molecules
;
genetics
;
metabolism
;
Corpus Callosum
;
metabolism
;
pathology
;
Genotype
;
Hydrocephalus
;
genetics
;
metabolism
;
pathology
;
Mice
;
Mice, Knockout
;
Motor Activity
;
genetics
;
physiology
;
Mutation
10.Spliceosomal genes in the D. discoideum genome: a comparison with those in H. sapiens, D. melanogaster, A. thaliana and S. cerevisiae.
Bing YU ; Petra FEY ; Karen E KESTIN-PILCHER ; Alexei FEDOROV ; Ashwin PRAKASH ; Rex L CHISHOLM ; Jane Y WU
Protein & Cell 2011;2(5):395-409
Little is known about pre-mRNA splicing in Dictyostelium discoideum although its genome has been completely sequenced. Our analysis suggests that pre-mRNA splicing plays an important role in D. discoideum gene expression as two thirds of its genes contain at least one intron. Ongoing curation of the genome to date has revealed 40 genes in D. discoideum with clear evidence of alternative splicing, supporting the existence of alternative splicing in this unicellular organism. We identified 160 candidate U2-type spliceosomal proteins and related factors in D. discoideum based on 264 known human genes involved in splicing. Spliceosomal small ribonucleoproteins (snRNPs), PRP19 complex proteins and late-acting proteins are highly conserved in D. discoideum and throughout the metazoa. In non-snRNP and hnRNP families, D. discoideum orthologs are closer to those in A. thaliana, D. melanogaster and H. sapiens than to their counterparts in S. cerevisiae. Several splicing regulators, including SR proteins and CUG-binding proteins, were found in D. discoideum, but not in yeast. Our comprehensive catalog of spliceosomal proteins provides useful information for future studies of splicing in D. discoideum where the efficient genetic and biochemical manipulation will also further our general understanding of pre-mRNA splicing.
Alternative Splicing
;
Animals
;
Arabidopsis
;
genetics
;
Dictyostelium
;
genetics
;
Drosophila melanogaster
;
genetics
;
Genome, Protozoan
;
Humans
;
Phylogeny
;
Ribonucleoproteins, Small Nuclear
;
classification
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
Spliceosomes
;
genetics
;
metabolism