1.Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma
Alexander RAU ; Jakob NEUBAUER ; Laetitia TALEB ; Thomas STEIN ; Till SCHUERMANN ; Stephan RAU ; Sebastian FABY ; Sina WENGER ; Monika ENGELHARDT ; Fabian BAMBERG ; Jakob WEISS
Korean Journal of Radiology 2023;24(10):1006-1016
Objective:
Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT).
Materials and Methods:
In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined.
Results:
We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0–5.0] vs.4.0 [3.0–4.0]), edge sharpness (4.0 [4.0–5.0] vs. 4.0 [3.0–4.0]), image noise (4.0 [4.0–4.0] vs. 3.0 [3.0–4.0]), lesion conspicuity (4.0 [4.0–5.0] vs. 4.0 [3.0–4.0]), and diagnostic confidence (4.0 [4.0–5.0] vs. 4.0 [3.0–4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001).
Conclusion
Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.
2.Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning:A Prospective Study
Caroline WILPERT ; Hannah SCHNEIDER ; Alexander RAU ; Maximilian Frederic RUSSE ; Benedict OERTHER ; Ralph STRECKER ; Marcel Dominic NICKEL ; Elisabeth WEILAND ; Alexa HAEGER ; Matthias BENNDORF ; Thomas MAYRHOFER ; Jakob WEISS ; Fabian BAMBERG ; Marisa WINDFUHR-BLUM ; Jakob NEUBAUER
Korean Journal of Radiology 2025;26(1):29-42
Objective:
The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2DL) and a conventional T2-w FSE Dixon sequence (T2STD) for breast magnetic resonance imaging (MRI).
Materials and Methods:
This prospective study was conducted between November 2022 and April 2023 using a 3T scanner.Both T2DL and T2STD sequences were acquired for each patient. Quantitative analysis was based on region-of-interest (ROI) measurements of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Qualitative analysis was performed independently by two radiologists using Likert scales to evaluate various image quality features, morphology, and diagnostic confidence for cysts and breast cancers. Reader preference between T2DL and T2STD was assessed via side-by-side comparison, and inter-reader reliability was also analyzed.
Results:
Total of 151 women were enrolled, with 140 women (mean age: 52 ± 14 years; 85 cysts and 31 breast cancers) included in the final analysis. The acquisition time was 110 s ± 0 for T2DL compared to 266 s ± 0 for T2STD. SNR and CNR were significantly higher in T2DL (P < 0.001). T2DL was associated with higher image quality scores, reduced noise, and fewer artifacts (P < 0.001). All evaluated anatomical regions (breast and axilla), breast implants, and bone margins were rated higher in T2DL (P ≤ 0.008), except for bone marrow, which scored higher in T2STD (P < 0.001). Scores for conspicuity, sharpness/ margins, and microstructure of cysts and breast cancers were higher in T2DL (P ≤ 0.002). Diagnostic confidence for cysts was improved with T2DL (P < 0.001). Readers significantly preferred T2DL over T2STD in side-by-side comparisons (P < 0.001).
Conclusion
T2DL effectively corrected for SNR loss caused by accelerated image acquisition and provided a 58% reduction in acquisition time compared to T2STD. This led to fewer artifacts and improved overall image quality. Thus, T2DL is feasible and has the potential to replace conventional T2-w sequences for breast MRI examinations.
3.Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning:A Prospective Study
Caroline WILPERT ; Hannah SCHNEIDER ; Alexander RAU ; Maximilian Frederic RUSSE ; Benedict OERTHER ; Ralph STRECKER ; Marcel Dominic NICKEL ; Elisabeth WEILAND ; Alexa HAEGER ; Matthias BENNDORF ; Thomas MAYRHOFER ; Jakob WEISS ; Fabian BAMBERG ; Marisa WINDFUHR-BLUM ; Jakob NEUBAUER
Korean Journal of Radiology 2025;26(1):29-42
Objective:
The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2DL) and a conventional T2-w FSE Dixon sequence (T2STD) for breast magnetic resonance imaging (MRI).
Materials and Methods:
This prospective study was conducted between November 2022 and April 2023 using a 3T scanner.Both T2DL and T2STD sequences were acquired for each patient. Quantitative analysis was based on region-of-interest (ROI) measurements of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Qualitative analysis was performed independently by two radiologists using Likert scales to evaluate various image quality features, morphology, and diagnostic confidence for cysts and breast cancers. Reader preference between T2DL and T2STD was assessed via side-by-side comparison, and inter-reader reliability was also analyzed.
Results:
Total of 151 women were enrolled, with 140 women (mean age: 52 ± 14 years; 85 cysts and 31 breast cancers) included in the final analysis. The acquisition time was 110 s ± 0 for T2DL compared to 266 s ± 0 for T2STD. SNR and CNR were significantly higher in T2DL (P < 0.001). T2DL was associated with higher image quality scores, reduced noise, and fewer artifacts (P < 0.001). All evaluated anatomical regions (breast and axilla), breast implants, and bone margins were rated higher in T2DL (P ≤ 0.008), except for bone marrow, which scored higher in T2STD (P < 0.001). Scores for conspicuity, sharpness/ margins, and microstructure of cysts and breast cancers were higher in T2DL (P ≤ 0.002). Diagnostic confidence for cysts was improved with T2DL (P < 0.001). Readers significantly preferred T2DL over T2STD in side-by-side comparisons (P < 0.001).
Conclusion
T2DL effectively corrected for SNR loss caused by accelerated image acquisition and provided a 58% reduction in acquisition time compared to T2STD. This led to fewer artifacts and improved overall image quality. Thus, T2DL is feasible and has the potential to replace conventional T2-w sequences for breast MRI examinations.
4.Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning:A Prospective Study
Caroline WILPERT ; Hannah SCHNEIDER ; Alexander RAU ; Maximilian Frederic RUSSE ; Benedict OERTHER ; Ralph STRECKER ; Marcel Dominic NICKEL ; Elisabeth WEILAND ; Alexa HAEGER ; Matthias BENNDORF ; Thomas MAYRHOFER ; Jakob WEISS ; Fabian BAMBERG ; Marisa WINDFUHR-BLUM ; Jakob NEUBAUER
Korean Journal of Radiology 2025;26(1):29-42
Objective:
The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2DL) and a conventional T2-w FSE Dixon sequence (T2STD) for breast magnetic resonance imaging (MRI).
Materials and Methods:
This prospective study was conducted between November 2022 and April 2023 using a 3T scanner.Both T2DL and T2STD sequences were acquired for each patient. Quantitative analysis was based on region-of-interest (ROI) measurements of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Qualitative analysis was performed independently by two radiologists using Likert scales to evaluate various image quality features, morphology, and diagnostic confidence for cysts and breast cancers. Reader preference between T2DL and T2STD was assessed via side-by-side comparison, and inter-reader reliability was also analyzed.
Results:
Total of 151 women were enrolled, with 140 women (mean age: 52 ± 14 years; 85 cysts and 31 breast cancers) included in the final analysis. The acquisition time was 110 s ± 0 for T2DL compared to 266 s ± 0 for T2STD. SNR and CNR were significantly higher in T2DL (P < 0.001). T2DL was associated with higher image quality scores, reduced noise, and fewer artifacts (P < 0.001). All evaluated anatomical regions (breast and axilla), breast implants, and bone margins were rated higher in T2DL (P ≤ 0.008), except for bone marrow, which scored higher in T2STD (P < 0.001). Scores for conspicuity, sharpness/ margins, and microstructure of cysts and breast cancers were higher in T2DL (P ≤ 0.002). Diagnostic confidence for cysts was improved with T2DL (P < 0.001). Readers significantly preferred T2DL over T2STD in side-by-side comparisons (P < 0.001).
Conclusion
T2DL effectively corrected for SNR loss caused by accelerated image acquisition and provided a 58% reduction in acquisition time compared to T2STD. This led to fewer artifacts and improved overall image quality. Thus, T2DL is feasible and has the potential to replace conventional T2-w sequences for breast MRI examinations.
5.Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning:A Prospective Study
Caroline WILPERT ; Hannah SCHNEIDER ; Alexander RAU ; Maximilian Frederic RUSSE ; Benedict OERTHER ; Ralph STRECKER ; Marcel Dominic NICKEL ; Elisabeth WEILAND ; Alexa HAEGER ; Matthias BENNDORF ; Thomas MAYRHOFER ; Jakob WEISS ; Fabian BAMBERG ; Marisa WINDFUHR-BLUM ; Jakob NEUBAUER
Korean Journal of Radiology 2025;26(1):29-42
Objective:
The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2DL) and a conventional T2-w FSE Dixon sequence (T2STD) for breast magnetic resonance imaging (MRI).
Materials and Methods:
This prospective study was conducted between November 2022 and April 2023 using a 3T scanner.Both T2DL and T2STD sequences were acquired for each patient. Quantitative analysis was based on region-of-interest (ROI) measurements of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Qualitative analysis was performed independently by two radiologists using Likert scales to evaluate various image quality features, morphology, and diagnostic confidence for cysts and breast cancers. Reader preference between T2DL and T2STD was assessed via side-by-side comparison, and inter-reader reliability was also analyzed.
Results:
Total of 151 women were enrolled, with 140 women (mean age: 52 ± 14 years; 85 cysts and 31 breast cancers) included in the final analysis. The acquisition time was 110 s ± 0 for T2DL compared to 266 s ± 0 for T2STD. SNR and CNR were significantly higher in T2DL (P < 0.001). T2DL was associated with higher image quality scores, reduced noise, and fewer artifacts (P < 0.001). All evaluated anatomical regions (breast and axilla), breast implants, and bone margins were rated higher in T2DL (P ≤ 0.008), except for bone marrow, which scored higher in T2STD (P < 0.001). Scores for conspicuity, sharpness/ margins, and microstructure of cysts and breast cancers were higher in T2DL (P ≤ 0.002). Diagnostic confidence for cysts was improved with T2DL (P < 0.001). Readers significantly preferred T2DL over T2STD in side-by-side comparisons (P < 0.001).
Conclusion
T2DL effectively corrected for SNR loss caused by accelerated image acquisition and provided a 58% reduction in acquisition time compared to T2STD. This led to fewer artifacts and improved overall image quality. Thus, T2DL is feasible and has the potential to replace conventional T2-w sequences for breast MRI examinations.
6.Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning:A Prospective Study
Caroline WILPERT ; Hannah SCHNEIDER ; Alexander RAU ; Maximilian Frederic RUSSE ; Benedict OERTHER ; Ralph STRECKER ; Marcel Dominic NICKEL ; Elisabeth WEILAND ; Alexa HAEGER ; Matthias BENNDORF ; Thomas MAYRHOFER ; Jakob WEISS ; Fabian BAMBERG ; Marisa WINDFUHR-BLUM ; Jakob NEUBAUER
Korean Journal of Radiology 2025;26(1):29-42
Objective:
The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2DL) and a conventional T2-w FSE Dixon sequence (T2STD) for breast magnetic resonance imaging (MRI).
Materials and Methods:
This prospective study was conducted between November 2022 and April 2023 using a 3T scanner.Both T2DL and T2STD sequences were acquired for each patient. Quantitative analysis was based on region-of-interest (ROI) measurements of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Qualitative analysis was performed independently by two radiologists using Likert scales to evaluate various image quality features, morphology, and diagnostic confidence for cysts and breast cancers. Reader preference between T2DL and T2STD was assessed via side-by-side comparison, and inter-reader reliability was also analyzed.
Results:
Total of 151 women were enrolled, with 140 women (mean age: 52 ± 14 years; 85 cysts and 31 breast cancers) included in the final analysis. The acquisition time was 110 s ± 0 for T2DL compared to 266 s ± 0 for T2STD. SNR and CNR were significantly higher in T2DL (P < 0.001). T2DL was associated with higher image quality scores, reduced noise, and fewer artifacts (P < 0.001). All evaluated anatomical regions (breast and axilla), breast implants, and bone margins were rated higher in T2DL (P ≤ 0.008), except for bone marrow, which scored higher in T2STD (P < 0.001). Scores for conspicuity, sharpness/ margins, and microstructure of cysts and breast cancers were higher in T2DL (P ≤ 0.002). Diagnostic confidence for cysts was improved with T2DL (P < 0.001). Readers significantly preferred T2DL over T2STD in side-by-side comparisons (P < 0.001).
Conclusion
T2DL effectively corrected for SNR loss caused by accelerated image acquisition and provided a 58% reduction in acquisition time compared to T2STD. This led to fewer artifacts and improved overall image quality. Thus, T2DL is feasible and has the potential to replace conventional T2-w sequences for breast MRI examinations.