1.The Regulation of ERK, GSK3beta and AKT after Acute Ethanol Exposure and Withdrawal in SH-SY5Y Human Neuroblastoma Cell-line.
Jaewoo ROH ; Feng Ji CUI ; Ung Gu KANG
Journal of Korean Neuropsychiatric Association 2010;49(2):241-247
OBJECTIVES: This study aimed to demonstrate the activities and phosphorylation changes induced by acute ethanol treatment and withdrawal conditions in the intracellular signal transduction molecules [such as extracellular signal-regulated kinase (ERK), glycogen synthase kinase 3beta (GSK3beta), and Akt] of the SH-SY5Y neuroblastoma cell line. METHODS: The acute treatment exposed SH-SY5Y cells to 100 mM ethanol, and we took samples 30 minutes, 60 minutes, and 24 hours after initiating this treatment. After 24 hours' continuous ethanol treatment, we initiated ethanol withdrawal, taking samples at 30 minutes and 60 minutes. We assayed the kinase phosphorylations via an immunoblot analysis using phosphorspecific antibodies, quantified by optical densitometry. RESULTS: Ethanol treatment induced a transient increase in phosphorylation of GSK3beta and Akt at 30 minutes but failed to change the phosphorylation level of ERK. Ethanol withdrawal induced a transient ERK phosphorylation increase at 30 minutes, but it had no effect on the phosphorylation of GSK3beta or Akt. CONCLUSION: The results indicate that the ethanol-induced cellular response includes the ERK, GSK3beta, and Akt systems. In particular, the ERK pathway may play a role in the acute withdrawal response. This also suggests that a relatively short exposure to ethanol, such as the 24-hour exposure in this study, can induce functional adaptation within a cell.
Antibodies
;
Cell Line
;
Densitometry
;
Ethanol
;
Glycogen Synthase Kinase 3
;
Glycogen Synthase Kinases
;
Humans
;
MAP Kinase Signaling System
;
Neuroblastoma
;
Phosphorylation
;
Phosphotransferases
;
Signal Transduction
2.Treatment of Failed Arthrodesis of First Metatarsophalangeal Joint with Tensor Fascia Lata Interposition Arthroplasty: A Case Report.
Jaewoo SIM ; Yoonsuk HYUN ; Junsik PARK ; Saehyun KANG ; Hwanjin KWON ; Gablae KIM
Journal of Korean Foot and Ankle Society 2017;21(1):39-42
Surgical treatments for arthritis in the first metatarsophalangeal joint include arthrodesis, interposition arthroplasty using silicone or meniscus cartilage, and rarely arthroplasty. Although arthrodesis was performed successfully, pain can persist if the angle of fusion was inappropriate. Interposition arthroplasty can be tried for the treatment of persisting pain after the arthrodesis. Interposition arthroplasty using tensor fascia lata is known that has low risk of adhesions and easy to harvest. Compared to autologous grafts, grafting rates is high and low risk of rejection additionally. Herein, we report a successfully managed arthritis with severe pain with interposition arthroplasty using tensor fascia lata after a failed metatarsophalangeal joint arthrodesis.
Arthritis
;
Arthrodesis*
;
Arthroplasty*
;
Cartilage
;
Fascia Lata*
;
Fascia*
;
Metatarsophalangeal Joint*
;
Silicon
;
Silicones
;
Transplants
3.Erratum to: Feasibility of Using a Mobile Application for the Monitoring and Management of Stroke-Associated Risk Factors.
Woo Keun SEO ; Jaewoo KANG ; Minji JEON ; Kyubum LEE ; Sunwon LEE ; Ji Hyun KIM ; Kyungmi OH ; Seong Beom KOH
Journal of Clinical Neurology 2015;11(3):295-295
Some information was missing in the original version of this article.
4.Heme-binding-mediated negative regulation of the tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) by IDO2.
Young Kwan LEE ; Hoon Bok LEE ; Dong Mi SHIN ; Min Jueng KANG ; Eugene C YI ; Seungjoo NOH ; Jaewoo LEE ; Chulbom LEE ; Chang Ki MIN ; Eun Young CHOI
Experimental & Molecular Medicine 2014;46(11):e121-
Indoleamine 2,3-dioxygenases (IDOs) are tryptophan-catabolizing enzymes with immunomodulatory functions. However, the biological role of IDO2 and its relationship with IDO1 are unknown. To assess the relationship between IDO2 and IDO1, we investigated the effects of co-expression of human (h) IDO2 on hIDO1 activity. Cells co-expressing hIDO1 and hIDO2 showed reduced tryptophan metabolic activity compared with those expressing hIDO1 only. In a proteomic analysis, hIDO1-expressing cells exhibited enhanced expression of proteins related to the cell cycle and amino acid metabolism, and decreased expression of proteins related to cell survival. However, cells co-expressing hIDO1 and hIDO2 showed enhanced expression of negative regulators of cell apoptosis compared with those expressing hIDO1 only. Co-expression of hIDO1 and hIDO2 rescued the cell death induced by tryptophan-depletion through hIDO1 activity. Cells expressing only hIDO2 exhibited no marked differences in proteome profiles or cell growth compared with mock-transfectants. Cellular tryptophan metabolic activity and cell death were restored by co-expressing the hIDO2 mutant substituting the histidine 360 residue for alanine. These results demonstrate that hIDO2 plays a novel role as a negative regulator of hIDO1 by competing for heme-binding with hIDO1, and provide information useful for development of therapeutic strategies to control cancer and immunological disorders that target IDO molecules.
Cell Proliferation
;
Cell Survival
;
Gene Expression
;
HEK293 Cells
;
Heme/*metabolism
;
Humans
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics/*metabolism
;
Protein Binding
;
Tryptophan/*metabolism
;
Up-Regulation
5.Feasibility of Using a Mobile Application for the Monitoring and Management of Stroke-Associated Risk Factors.
Woo Keun SEO ; Jaewoo KANG ; Minji JEON ; Kyubum LEE ; Sunwon LEE ; Ji Hyun KIM ; Kyungmi OH ; Seong Beom KOH
Journal of Clinical Neurology 2015;11(2):142-148
BACKGROUND AND PURPOSE: Recent advances in information technology have created opportunities for advances in the management of stroke. The objective of this study was to test the feasibility of using a smartphone software application (app) for the management of vascular risk factors in patients with stroke. METHODS: This prospective clinical trial developed a smartphone app, the 'Korea University Health Monitoring System for Stroke: KUHMS2,' for use by patients with stroke. During a 6-month follow-up period, its feasibility was assessed by measuring the changes in their vascular risk-factor profiles and the number of days per patient with data registration into the app. The effect of the app on the achievement rate of risk-factor targets was assessed by classifying subjects into compliant and noncompliant groups. RESULTS: At the end of the trial, data on 48 patients were analyzed. The number of days on which data were registered into the app was 60.42+/-50.17 (mean+/-standard deviation). Among predefined vascular risk factors, the target achievement rate for blood pressure and glycated hemoglobin (HbA1c) improved significantly from baseline to the final measurement. The serial changes in achievement rates for risk-factor targets did not differ between the compliant and noncompliant groups. CONCLUSIONS: Many challenges must be overcome before mobile apps can be used for patients with stroke. Nevertheless, the app tested in this study induced a shift in the risk profiles in a favorable direction among the included stroke patients.
Blood Pressure
;
Delivery of Health Care
;
Follow-Up Studies
;
Hemoglobin A, Glycosylated
;
Humans
;
Mobile Applications*
;
Prospective Studies
;
Risk Factors*
;
Stroke
;
Smartphone
6.Current Status of Flow Cytometric Immunophenotyping of Hematolymphoid Neoplasms in Korea
Mikyoung PARK ; Jihyang LIM ; Ari AHN ; Eun-Jee OH ; Jaewoo SONG ; Kyeong-Hee KIM ; Jin-Yeong HAN ; Hyun-Woo CHOI ; Joo-Heon PARK ; Kyung-Hwa SHIN ; Hyerim KIM ; Miyoung KIM ; Sang-Hyun HWANG ; Hyun-Young KIM ; Duck CHO ; Eun-Suk KANG
Annals of Laboratory Medicine 2024;44(3):222-234
Background:
Flow cytometric immunophenotyping of hematolymphoid neoplasms (FCIHLN) is essential for diagnosis, classification, and minimal residual disease (MRD) monitoring. FCI-HLN is typically performed using in-house protocols, raising the need for standardization. Therefore, we surveyed the current status of FCI-HLN in Korea to obtain fundamental data for quality improvement and standardization.
Methods:
Eight university hospitals actively conducting FCI-HLN participated in our survey.We analyzed responses to a questionnaire that included inquiries regarding test items, reagent antibodies (RAs), fluorophores, sample amounts (SAs), reagent antibody amounts (RAAs), acquisition cell number (ACN), isotype control (IC) usage, positiveegative criteria, and reporting.
Results:
Most hospitals used acute HLN, chronic HLN, plasma cell neoplasm (PCN), and MRD panels. The numbers of RAs were heterogeneous, with a maximum of 32, 26, 12, 14, and 10 antibodies used for acute HLN, chronic HLN, PCN, ALL-MRD, and multiple myeloma-MRD, respectively. The number of fluorophores ranged from 4 to 10. RAs, SAs, RAAs, and ACN were diverse. Most hospitals used a positive criterion of 20%, whereas one used 10% for acute and chronic HLN panels. Five hospitals used ICs for the negative criterion. Positiveegative assignments, percentages, and general opinions were commonly reported. In MRD reporting, the limit of detection and lower limit of quantification were included.
Conclusions
This is the first comprehensive study on the current status of FCI-HLN in Korea, confirming the high heterogeneity and complexity of FCI-HLN practices. Standardization of FCI-HLN is urgently needed. The findings provide a reference for establishing standard FCI-HLN guidelines.
7.The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene
Sinae KIM ; Jong Ho LEE ; Siyoung LEE ; Saerok SHIM ; Tam T. NGUYEN ; Jihyeong HWANG ; Heijun KIM ; Yeo-Ok CHOI ; Jaewoo HONG ; Suyoung BAE ; Hyunjhung JHUN ; Hokee YUM ; Youngmin LEE ; Edward D. CHAN ; Liping YU ; Tania AZAM ; Yong-Dae KIM ; Su Cheong YEOM ; Kwang Ha YOO ; Lin-Woo KANG ; Kyeong-Cheol SHIN ; Soohyun KIM
Immune Network 2020;20(5):e41-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense singlestranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor – angiotensin converting enzyme 2 (ACE2) – on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene.The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.