1.Non-invasive evaluation of embryo quality for the selection of transferable embryos in human in vitro fertilization-embryo transfer
Jihyun KIM ; Jaewang LEE ; Jin Hyun JUN
Clinical and Experimental Reproductive Medicine 2022;49(4):225-238
The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.
2.Advantages of the outgrowth model for evaluating the implantation competence of blastocysts
Jihyun KIM ; Jaewang LEE ; Jin Hyun JUN
Clinical and Experimental Reproductive Medicine 2020;47(2):85-93
The implantation process is highly complex and difficult to mimic in vitro, and a reliable experimental model of implantation has yet to be established. Many researchers have used embryo transfer (ET) to assess implantation potential; however, ET with pseudopregnant mice requires expert surgical skills and numerous sacrificial animals. To overcome those economic and ethical problems, several researchers have tried to use outgrowth models to evaluate the implantation potential of embryos. Many previous studies, as well as our experiments, have found significant correlations between blastocyst outgrowth in vitro and implantation in utero by ET. This review proposes the blastocyst outgrowth model as a possible alternative to animal experimentation involving ET in utero. In particular, the outgrowth model might be a cost- and time-effective alternative method to ET for evaluating the effectiveness of culture conditions or treatments. An advanced outgrowth model and further culture of outgrowth embryos could provide a subtle research model of peri- and postimplantation development, excluding maternal effects, and thereby could facilitate progress in assisted reproductive technologies. Recently, we found that outgrowth embryos secreted extracellular vesicles containing specific microRNAs. The function of microRNAs from outgrowth embryos should be elucidated in further researches.
3.A Case of Scleredema Mimicking Systemic Sclerosis with Hypoalbuminemia Induced by Malabsorption in Alcoholic Chronic Pancreatitis.
Taeyun KIM ; Jaewang KIM ; Heung Up KIM ; Jinseok KIM
Journal of Rheumatic Diseases 2011;18(3):197-202
Scleroderma pathogenesis is the accumulation of extracellular matrix proteins and is a relatively rare connective tissue disorder characterized by skin fibrosis, obliterative vasculopathy, and distinct autoimmune abnormalities. However, many other clinical conditions known collectively as the scleroderma-like syndrome present with substantial skin fibrosis and may be confused with scleroderma, sometimes leading to an incorrect diagnosis. Due to this, early and correct diagnosis is very important to for appropriate treatment available for scleroderma-like syndrome. We report a rare case of scleredema mimicking systemic sclerosis with hypoalbuminemia induced by malabsorption in alcoholic chronic pancreatitis. In this case, the patient's skin sclerosis and joint contracture dramatically improved after high dose steroid theraphy.
Alcoholics
;
Connective Tissue
;
Contracture
;
Extracellular Matrix Proteins
;
Fibrosis
;
Humans
;
Hypoalbuminemia
;
Joints
;
Pancreatitis, Chronic
;
Scleredema Adultorum
;
Scleroderma, Systemic
;
Sclerosis
;
Skin
4.Detrimental effects of lipopolysaccharide on the attachment and outgrowth of various trophoblastic spheroids on human endometrial epithelial cells
Wontae KIM ; Jungwon CHOI ; Hyejin YOON ; Jaewang LEE ; Jin Hyun JUN
Clinical and Experimental Reproductive Medicine 2021;48(2):132-141
Objective:
Lipopolysaccharide (LPS) from Gram-negative bacteria causes poor uterine receptivity by inducing excessive inflammation at the maternal-fetal interface. This study aimed to investigate the detrimental effects of LPS on the attachment and outgrowth of various types of trophoblastic spheroids on endometrial epithelial cells (ECC-1 cells) in an in vitro model of implantation.
Methods:
Three types of spheroids with JAr, JEG-3, and JAr mixed JEG-3 (JmJ) cells were used to evaluate the effect of LPS on early implantation events. ECC-1 cells were treated with LPS to mimic endometrial infection, and the expression of inflammatory cytokines and adhesion molecules was analyzed by quantitative real-time polymerase chain reaction and western blotting. The attachment rates and outgrowth areas were evaluated in the various trophoblastic spheroids and ECC-1 cells treated with LPS.
Results:
LPS treatment significantly increased the mRNA expression of inflammatory cytokines (CXCL1, IL-8, and IL-33) and decreased the protein expression of adhesion molecules (ITGβ3 and ITGβ5) in ECC-1 cells. The attachment rates of JAr and JmJ spheroids on ECC-1 cells significantly decreased after treating the ECC-1 cells with 1 and 10 μg/mL LPS. In the outgrowth assay, JAr spheroids did not show any outgrowth areas. However, the outgrowth areas of JEG-3 spheroids were similar regardless of LPS treatment. LPS treatment of JmJ spheroids significantly decreased the outgrowth area after 72 hours of coincubation.
Conclusion
An in vitro implantation model using novel JmJ spheroids was established, and the inhibitory effects of LPS on ECC-1 endometrial epithelial cells were confirmed in the early implantation process.
5.Poorly-Controlled Type 1 Diabetes Mellitus Impairs LH-LHCGR Signaling in the Ovaries and Decreases Female Fertility in Mice
Jaewang LEE ; Hoi Chang LEE ; So Youn KIM ; Geum Joon CHO ; Teresa K WOODRUFF
Yonsei Medical Journal 2019;60(7):667-678
PURPOSE: The aim of this study was to investigate how type I diabetes mellitus (T1D) affects the folliculogenesis and oocyte development, fertilization, and embryo development. MATERIALS AND METHODS: A comparative animal study was conducted using two different mouse models of T1D, a genetic AKITA model and a streptozotocin-induced diabetes model. Ovarian function was assessed by gross observation, immunoblot, immunohistochemistry, oocyte counting, and ELISA for serum hormones (insulin, anti-Mullerian hormone, estradiol, testosterone, and progesterone). Maturation and developmental competence of metaphase II oocytes from control and T1D animals was evaluated by immunofluorescent and immunohistochemical detection of biomarkers and in vitro fertilization. RESULTS: Animals from both T1D models showed increased blood glucose levels, while only streptozotocin (STZ)-injected mice showed reduced body weight. Folliculogenesis, oogenesis, and preimplantation embryogenesis were impaired in both T1D mouse models. Interestingly, exogenous streptozotocin injection to induce T1D led to marked decreases in ovary size, expression of luteinizing hormone/chorionic gonadotropin receptor in the ovaries, the number of corpora lutea per ovary, oocyte maturation, and serum progesterone levels. Both T1D models exhibited significantly reduced pre-implantation embryo quality compared with controls. There was no significant difference in embryo quality between STZ-injected and AKITA diabetic mice. CONCLUSION: These results suggest that T1D affects folliculogenesis, oogenesis, and embryo development in mice. However, the physiological mechanisms underlying the observed reproductive effects of diabetes need to be further investigated.
Animals
;
Anti-Mullerian Hormone
;
Biomarkers
;
Blood Glucose
;
Body Weight
;
Corpus Luteum
;
Diabetes Mellitus
;
Diabetes Mellitus, Type 1
;
Embryonic Development
;
Embryonic Structures
;
Enzyme-Linked Immunosorbent Assay
;
Estradiol
;
Female
;
Female
;
Fertility
;
Fertilization
;
Fertilization in Vitro
;
Gonadotropins
;
Humans
;
Immunohistochemistry
;
Lutein
;
Mental Competency
;
Metaphase
;
Mice
;
Oocytes
;
Oogenesis
;
Ovary
;
Pregnancy
;
Progesterone
;
Reproduction
;
Streptozocin
;
Testosterone
6.Detrimental effects of lipopolysaccharide on the attachment and outgrowth of various trophoblastic spheroids on human endometrial epithelial cells
Wontae KIM ; Jungwon CHOI ; Hyejin YOON ; Jaewang LEE ; Jin Hyun JUN
Clinical and Experimental Reproductive Medicine 2021;48(2):132-141
Objective:
Lipopolysaccharide (LPS) from Gram-negative bacteria causes poor uterine receptivity by inducing excessive inflammation at the maternal-fetal interface. This study aimed to investigate the detrimental effects of LPS on the attachment and outgrowth of various types of trophoblastic spheroids on endometrial epithelial cells (ECC-1 cells) in an in vitro model of implantation.
Methods:
Three types of spheroids with JAr, JEG-3, and JAr mixed JEG-3 (JmJ) cells were used to evaluate the effect of LPS on early implantation events. ECC-1 cells were treated with LPS to mimic endometrial infection, and the expression of inflammatory cytokines and adhesion molecules was analyzed by quantitative real-time polymerase chain reaction and western blotting. The attachment rates and outgrowth areas were evaluated in the various trophoblastic spheroids and ECC-1 cells treated with LPS.
Results:
LPS treatment significantly increased the mRNA expression of inflammatory cytokines (CXCL1, IL-8, and IL-33) and decreased the protein expression of adhesion molecules (ITGβ3 and ITGβ5) in ECC-1 cells. The attachment rates of JAr and JmJ spheroids on ECC-1 cells significantly decreased after treating the ECC-1 cells with 1 and 10 μg/mL LPS. In the outgrowth assay, JAr spheroids did not show any outgrowth areas. However, the outgrowth areas of JEG-3 spheroids were similar regardless of LPS treatment. LPS treatment of JmJ spheroids significantly decreased the outgrowth area after 72 hours of coincubation.
Conclusion
An in vitro implantation model using novel JmJ spheroids was established, and the inhibitory effects of LPS on ECC-1 endometrial epithelial cells were confirmed in the early implantation process.
7.Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions
Chaithanya CHELAKKOT ; Youngwoo CHOI ; Dae Kyum KIM ; Hyun T PARK ; Jaewang GHIM ; Yonghoon KWON ; Jinseong JEON ; Min Seon KIM ; Young Koo JEE ; Yong S GHO ; Hae Sim PARK ; Yoon Keun KIM ; Sung H RYU
Experimental & Molecular Medicine 2018;50(2):e450-
The gut microbiota has an important role in the gut barrier, inflammation and metabolic functions. Studies have identified a close association between the intestinal barrier and metabolic diseases, including obesity and type 2 diabetes (T2D). Recently, Akkermansia muciniphila has been reported as a beneficial bacterium that reduces gut barrier disruption and insulin resistance. Here we evaluated the role of A. muciniphila-derived extracellular vesicles (AmEVs) in the regulation of gut permeability. We found that there are more AmEVs in the fecal samples of healthy controls compared with those of patients with T2D. In addition, AmEV administration enhanced tight junction function, reduced body weight gain and improved glucose tolerance in high-fat diet (HFD)-induced diabetic mice. To test the direct effect of AmEVs on human epithelial cells, cultured Caco-2 cells were treated with these vesicles. AmEVs decreased the gut permeability of lipopolysaccharide-treated Caco-2 cells, whereas Escherichia coli-derived EVs had no significant effect. Interestingly, the expression of occludin was increased by AmEV treatment. Overall, these results imply that AmEVs may act as a functional moiety for controlling gut permeability and that the regulation of intestinal barrier integrity can improve metabolic functions in HFD-fed mice.