1.Regulation of Osteoclast Differentiation by Cytokine Networks
Dulshara Sachini AMARASEKARA ; Hyeongseok YUN ; Sumi KIM ; Nari LEE ; Hyunjong KIM ; Jaerang RHO
Immune Network 2018;18(1):e8-
Cytokines play a pivotal role in maintaining bone homeostasis. Osteoclasts (OCs), the sole bone resorbing cells, are regulated by numerous cytokines. Macrophage colony-stimulating factor and receptor activator of NF-κB ligand play a central role in OC differentiation, which is also termed osteoclastogenesis. Osteoclastogenic cytokines, including tumor necrosis factor-α, IL-1, IL-6, IL-7, IL-8, IL-11, IL-15, IL-17, IL-23, and IL-34, promote OC differentiation, whereas anti-osteoclastogenic cytokines, including interferon (IFN)-α, IFN-β, IFN-γ, IL-3, IL-4, IL-10, IL-12, IL-27, and IL-33, downregulate OC differentiation. Therefore, dynamic regulation of osteoclastogenic and anti-osteoclastogenic cytokines is important in maintaining the balance between bone-resorbing OCs and bone-forming osteoblasts (OBs), which eventually affects bone integrity. This review outlines the osteoclastogenic and anti-osteoclastogenic properties of cytokines with regard to osteoimmunology, and summarizes our current understanding of the roles these cytokines play in osteoclastogenesis.
Cytokines
;
Homeostasis
;
Interferons
;
Interleukin-1
;
Interleukin-10
;
Interleukin-11
;
Interleukin-12
;
Interleukin-15
;
Interleukin-17
;
Interleukin-23
;
Interleukin-27
;
Interleukin-3
;
Interleukin-33
;
Interleukin-4
;
Interleukin-6
;
Interleukin-7
;
Interleukin-8
;
Macrophage Colony-Stimulating Factor
;
Necrosis
;
Osteoblasts
;
Osteoclasts
;
RANK Ligand
2.TDAG51 deficiency promotes oxidative stress-induced apoptosis through the generation of reactive oxygen species in mouse embryonic fibroblasts.
Eui Soon PARK ; Juhyeok KIM ; Tae Uk HA ; Jong Soon CHOI ; Kwan Soo HONG ; Jaerang RHO
Experimental & Molecular Medicine 2013;45(8):e35-
Apoptosis has an important role in maintaining tissue homeostasis in cellular stress responses such as inflammation, endoplasmic reticulum stress, and oxidative stress. T-cell death-associated gene 51 (TDAG51) is a member of the pleckstrin homology-like domain family and was first identified as a pro-apoptotic gene in T-cell receptor-mediated cell death. However, its pro-apoptotic function remains controversial. In this study, we investigated the role of TDAG51 in oxidative stress-induced apoptotic cell death in mouse embryonic fibroblasts (MEFs). TDAG51 expression was highly increased by oxidative stress responses. In response to oxidative stress, the production of intracellular reactive oxygen species was significantly enhanced in TDAG51-deficient MEFs, resulting in the activation of caspase-3. Thus, TDAG51 deficiency promotes apoptotic cell death in MEFs, and these results indicate that TDAG51 has a protective role in oxidative stress-induced cell death in MEFs.
Animals
;
*Apoptosis
;
Embryo, Mammalian/*cytology
;
Fibroblasts/enzymology/*metabolism/pathology
;
Gene Expression Regulation
;
Intracellular Space/metabolism
;
Mice
;
Mitogen-Activated Protein Kinases/metabolism
;
NF-kappa B/metabolism
;
*Oxidative Stress/genetics
;
Reactive Oxygen Species/*metabolism
;
Signal Transduction
;
Transcription Factors/*deficiency/genetics/metabolism
3.Generation of an osteoblast-based artificial niche that supports in vitro B lymphopoiesis.
Jiyeon YU ; Seunga CHOI ; Hyeonkyeong KIM ; Nari LEE ; Hyeongseok YUN ; Sumi KIM ; Seong Tae JEONG ; Jaerang RHO
Experimental & Molecular Medicine 2017;49(11):e400-
B lymphocytes are produced from hematopoietic stem cells (HSCs) through the highly ordered process of B lymphopoiesis, which is regulated by a complex network of cytokines, chemokines and cell adhesion molecules derived from the hematopoietic niche. Primary osteoblasts function as an osteoblastic niche (OBN) that supports in vitro B lymphopoiesis. However, there are significant limitations to the use of primary osteoblasts, including their relative scarcity and the consistency and efficiency of the limited purification and proliferation of these cells. Thus, development of a stable osteoblast cell line that can function as a biomimetic or artificial OBN is necessary. In this study, we developed a stable osteoblastic cell line, designated OBN4, which functions as an osteoblast-based artificial niche that supports in vitro B lymphopoiesis. We demonstrated that the production of a B220⁺ cell population from Lineage⁻ (Lin⁻) Sca-1⁺ c-Kit⁺ hematopoietic stem and progenitor cells (HSPCs) was increased ~1.7-fold by OBN4 cells relative to production by primary osteoblasts and OP9 cells in coculture experiments. Consistently, OBN4 cells exhibited the highest production of B220⁺ IgM⁺ cell populations (6.7±0.6–13.6±0.6%) in an IL-7- and stromal cell-derived factor 1-dependent manner, with higher production than primary osteoblasts (3.7±0.5–6.4±0.6%) and OP9 cells (1.8±0.6–3.9±0.5%). In addition, the production of B220⁺ IgM⁺ IgD⁺ cell populations was significantly enhanced by OBN4 cells (15.4±1.1–18.9±3.2%) relative to production by primary osteoblasts (9.5±0.6–14.6±1.6%) and OP9 cells (9.1±0.5–10.3±1.8%). We conclude that OBN4 cells support in vitro B lymphopoiesis of Lin⁻ Sca-1⁺ c-Kit⁺ HSPCs more efficiently than primary osteoblasts or OP9 stromal cells.
B-Lymphocytes
;
Biomimetics
;
Cell Adhesion Molecules
;
Cell Line
;
Chemokines
;
Coculture Techniques
;
Cytokines
;
Hematopoietic Stem Cells
;
In Vitro Techniques*
;
Lymphopoiesis*
;
Osteoblasts
;
Stem Cells
;
Stromal Cells
4.1,3-Dibenzyl-5-Fluorouracil Prevents Ovariectomy-Induced Bone Loss by Suppressing Osteoclast Differentiation
Hyoeun JEON ; Jungeun YU ; Jung Me HWANG ; Hye-Won PARK ; Jiyeon YU ; Zee-Won LEE ; Taesoo KIM ; Jaerang RHO
Immune Network 2022;22(5):e43-
Osteoclasts (OCs) are clinically important cells that resorb bone matrix. Accelerated bone destruction by OCs is closely linked to the development of metabolic bone diseases. In this study, we screened novel chemical inhibitors targeting OC differentiation to identify drug candidates for metabolic bone diseases. We identified that 1,3-dibenzyl-5-fluorouracil, also named OCI-101, is a novel inhibitor of osteoclastogenesis. The formation of multinucleated OCs is reduced by treatment with OCI-101 in a dose-dependent manner. OCI-101 inhibited the expression of OC markers via downregulation of receptor activator of NF-κB ligand and M-CSF signaling pathways. Finally, we showed that OCI-101 prevents ovariectomy-induced bone loss by suppressing OC differentiation in mice. Hence, these results demonstrated that OCI-101 is a good drug candidate for treating metabolic bone diseases.