1.Aplastic Anemia, Mental Retardation, and Dwarfism Syndrome Associated with Aldh2 and Adh5 Mutations
Bomi LIM ; Anna CHO ; Jaehyun KIM ; Sang Mee HWANG ; Soo Yeon KIM ; Jong-Hee CHAE ; Hyoung Soo CHOI
Clinical Pediatric Hematology-Oncology 2024;31(2):52-55
Aplastic anemia, mental retardation, and dwarfism (AMeD) syndrome, also known as aldehyde degradation deficiency (ADD) syndrome, is an autosomal recessive disorder caused by mutations in the ALDH2 and ADH5 genes, leading to decreased activity of the aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 5 (ADH5) enzymes, subsequently triggering enhanced cellular levels of formaldehyde and diverse multisystem manifestations. Herein, we present the case of a 7-year-old girl with AMeD syndrome, characterized by pancytopenia, developmental delay, microcephaly, epilepsy, and myelodysplastic syndrome. Whole-exome sequencing revealed compound heterozygous variants (c.832G>C and c.678delA) in the ADH5 gene and a heterozygous pathogenic variant (c.1510G>A) in the ALDH2 gene. This case underscores the complexity of AMeD syndrome, emphasizing the importance of genetic testing to ensure diagnosis and aid in the development of potential targeted therapeutic approaches.
2.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
3.Considerations for the Implementation of Automated Blood Processing System Using the Platelet-Rich Plasma Method in Korea
Dongho CHUN ; Ha Jin LIM ; Jaehyun KIM ; Duck CHO
Korean Journal of Blood Transfusion 2024;35(3):200-205
Red blood cell concentrates, platelet concentrates, and fresh plasma are separated from whole blood through centrifugation. The main manufacturing methods, platelet-rich plasma (PRP) and buffy-coat (BC), are currently in use. The BC method has been increasingly adopted because of its high recovery rate of platelets and plasma, lower platelet activation, and reduced transfusion-related complications. Korea’s first Master Plan for Blood Management (2021∼2025) considered transitioning from the PRP method to the BC method and introducing automation to expand the supply of leukoreduced blood components. On the other hand, several issues have prevented this transition. In 2023, the US FDA cleared an automated system for the single centrifugation method without switching to the BC method. This paper discusses these approaches.
4.Aplastic Anemia, Mental Retardation, and Dwarfism Syndrome Associated with Aldh2 and Adh5 Mutations
Bomi LIM ; Anna CHO ; Jaehyun KIM ; Sang Mee HWANG ; Soo Yeon KIM ; Jong-Hee CHAE ; Hyoung Soo CHOI
Clinical Pediatric Hematology-Oncology 2024;31(2):52-55
Aplastic anemia, mental retardation, and dwarfism (AMeD) syndrome, also known as aldehyde degradation deficiency (ADD) syndrome, is an autosomal recessive disorder caused by mutations in the ALDH2 and ADH5 genes, leading to decreased activity of the aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 5 (ADH5) enzymes, subsequently triggering enhanced cellular levels of formaldehyde and diverse multisystem manifestations. Herein, we present the case of a 7-year-old girl with AMeD syndrome, characterized by pancytopenia, developmental delay, microcephaly, epilepsy, and myelodysplastic syndrome. Whole-exome sequencing revealed compound heterozygous variants (c.832G>C and c.678delA) in the ADH5 gene and a heterozygous pathogenic variant (c.1510G>A) in the ALDH2 gene. This case underscores the complexity of AMeD syndrome, emphasizing the importance of genetic testing to ensure diagnosis and aid in the development of potential targeted therapeutic approaches.
5.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
6.Cohort profile: Multicenter Networks for Ideal Outcomes of Rare Pediatric Endocrine and Metabolic Diseases in Korea (OUTSPREAD study)
Yun Jeong LEE ; Chong Kun CHEON ; Junghwan SUH ; Jung-Eun MOON ; Moon Bae AHN ; Seong Hwan CHANG ; Jieun LEE ; Jin Ho CHOI ; Minsun KIM ; Han Hyuk LIM ; Jaehyun KIM ; Shin-Hye KIM ; Hae Sang LEE ; Yena LEE ; Eungu KANG ; Se Young KIM ; Yong Hee HONG ; Seung YANG ; Heon-Seok HAN ; Sochung CHUNG ; Won Kyoung CHO ; Eun Young KIM ; Jin Kyung KIM ; Kye Shik SHIM ; Eun-Gyong YOO ; Hae Soon KIM ; Aram YANG ; Sejin KIM ; Hyo-Kyoung NAM ; Sung Yoon CHO ; Young Ah LEE
Annals of Pediatric Endocrinology & Metabolism 2024;29(6):349-355
Rare endocrine diseases are complex conditions that require lifelong specialized care due to their chronic nature and associated long-term complications. In Korea, a lack of nationwide data on clinical practice and outcomes has limited progress in patient care. Therefore, the Multicenter Networks for Ideal Outcomes of Pediatric Rare Endocrine and Metabolic Disease (OUTSPREAD) study was initiated. This study involves 30 centers across Korea. The study aims to improve the long-term prognosis of Korean patients with rare endocrine diseases by collecting comprehensive clinical data, biospecimens, and patient-reported outcomes to identify complications and unmet needs in patient care. Patients with childhood-onset pituitary, adrenal, or gonadal disorders, such as craniopharyngioma, congenital adrenal hyperplasia (CAH), and Turner syndrome were prioritized. The planned enrollment is 1,300 patients during the first study phase (2022–2024). Clinical, biochemical, and imaging data from diagnosis, treatment, and follow-up during 1980–2023 were retrospectively reviewed. For patients who agreed to participate in the prospective cohort, clinical data and biospecimens will be prospectively collected to discover ideal biomarkers that predict the effectiveness of disease control measures and prognosis. Patient-reported outcomes, including quality of life and depression scales, will be evaluated to assess psychosocial outcomes. Additionally, a substudy on CAH patients will develop a steroid hormone profiling method using liquid chromatography-tandem mass spectrometry to improve diagnosis and monitoring of treatment outcomes. This study will address unmet clinical needs by discovering ideal biomarkers, introducing evidence-based treatment guidelines, and ultimately improving long-term outcomes in the areas of rare endocrine and metabolic diseases.
7.Considerations for the Implementation of Automated Blood Processing System Using the Platelet-Rich Plasma Method in Korea
Dongho CHUN ; Ha Jin LIM ; Jaehyun KIM ; Duck CHO
Korean Journal of Blood Transfusion 2024;35(3):200-205
Red blood cell concentrates, platelet concentrates, and fresh plasma are separated from whole blood through centrifugation. The main manufacturing methods, platelet-rich plasma (PRP) and buffy-coat (BC), are currently in use. The BC method has been increasingly adopted because of its high recovery rate of platelets and plasma, lower platelet activation, and reduced transfusion-related complications. Korea’s first Master Plan for Blood Management (2021∼2025) considered transitioning from the PRP method to the BC method and introducing automation to expand the supply of leukoreduced blood components. On the other hand, several issues have prevented this transition. In 2023, the US FDA cleared an automated system for the single centrifugation method without switching to the BC method. This paper discusses these approaches.
8.Aplastic Anemia, Mental Retardation, and Dwarfism Syndrome Associated with Aldh2 and Adh5 Mutations
Bomi LIM ; Anna CHO ; Jaehyun KIM ; Sang Mee HWANG ; Soo Yeon KIM ; Jong-Hee CHAE ; Hyoung Soo CHOI
Clinical Pediatric Hematology-Oncology 2024;31(2):52-55
Aplastic anemia, mental retardation, and dwarfism (AMeD) syndrome, also known as aldehyde degradation deficiency (ADD) syndrome, is an autosomal recessive disorder caused by mutations in the ALDH2 and ADH5 genes, leading to decreased activity of the aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 5 (ADH5) enzymes, subsequently triggering enhanced cellular levels of formaldehyde and diverse multisystem manifestations. Herein, we present the case of a 7-year-old girl with AMeD syndrome, characterized by pancytopenia, developmental delay, microcephaly, epilepsy, and myelodysplastic syndrome. Whole-exome sequencing revealed compound heterozygous variants (c.832G>C and c.678delA) in the ADH5 gene and a heterozygous pathogenic variant (c.1510G>A) in the ALDH2 gene. This case underscores the complexity of AMeD syndrome, emphasizing the importance of genetic testing to ensure diagnosis and aid in the development of potential targeted therapeutic approaches.
9.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
10.Cohort profile: Multicenter Networks for Ideal Outcomes of Rare Pediatric Endocrine and Metabolic Diseases in Korea (OUTSPREAD study)
Yun Jeong LEE ; Chong Kun CHEON ; Junghwan SUH ; Jung-Eun MOON ; Moon Bae AHN ; Seong Hwan CHANG ; Jieun LEE ; Jin Ho CHOI ; Minsun KIM ; Han Hyuk LIM ; Jaehyun KIM ; Shin-Hye KIM ; Hae Sang LEE ; Yena LEE ; Eungu KANG ; Se Young KIM ; Yong Hee HONG ; Seung YANG ; Heon-Seok HAN ; Sochung CHUNG ; Won Kyoung CHO ; Eun Young KIM ; Jin Kyung KIM ; Kye Shik SHIM ; Eun-Gyong YOO ; Hae Soon KIM ; Aram YANG ; Sejin KIM ; Hyo-Kyoung NAM ; Sung Yoon CHO ; Young Ah LEE
Annals of Pediatric Endocrinology & Metabolism 2024;29(6):349-355
Rare endocrine diseases are complex conditions that require lifelong specialized care due to their chronic nature and associated long-term complications. In Korea, a lack of nationwide data on clinical practice and outcomes has limited progress in patient care. Therefore, the Multicenter Networks for Ideal Outcomes of Pediatric Rare Endocrine and Metabolic Disease (OUTSPREAD) study was initiated. This study involves 30 centers across Korea. The study aims to improve the long-term prognosis of Korean patients with rare endocrine diseases by collecting comprehensive clinical data, biospecimens, and patient-reported outcomes to identify complications and unmet needs in patient care. Patients with childhood-onset pituitary, adrenal, or gonadal disorders, such as craniopharyngioma, congenital adrenal hyperplasia (CAH), and Turner syndrome were prioritized. The planned enrollment is 1,300 patients during the first study phase (2022–2024). Clinical, biochemical, and imaging data from diagnosis, treatment, and follow-up during 1980–2023 were retrospectively reviewed. For patients who agreed to participate in the prospective cohort, clinical data and biospecimens will be prospectively collected to discover ideal biomarkers that predict the effectiveness of disease control measures and prognosis. Patient-reported outcomes, including quality of life and depression scales, will be evaluated to assess psychosocial outcomes. Additionally, a substudy on CAH patients will develop a steroid hormone profiling method using liquid chromatography-tandem mass spectrometry to improve diagnosis and monitoring of treatment outcomes. This study will address unmet clinical needs by discovering ideal biomarkers, introducing evidence-based treatment guidelines, and ultimately improving long-term outcomes in the areas of rare endocrine and metabolic diseases.

Result Analysis
Print
Save
E-mail