1.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
2.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
3.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
4.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
5.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
6.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
7.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
9.The Profile of Early Sedation Depth and Clinical Outcomes of Mechanically Ventilated Patients in Korea
Dong-gon HYUN ; Jee Hwan AHN ; Ha-Yeong GIL ; Chung Mo NAM ; Choa YUN ; Jae-Myeong LEE ; Jae Hun KIM ; Dong-Hyun LEE ; Ki Hoon KIM ; Dong Jung KIM ; Sang-Min LEE ; Ho-Geol RYU ; Suk-Kyung HONG ; Jae-Bum KIM ; Eun Young CHOI ; JongHyun BAEK ; Jeoungmin KIM ; Eun Jin KIM ; Tae Yun PARK ; Je Hyeong KIM ; Sunghoon PARK ; Chi-Min PARK ; Won Jai JUNG ; Nak-Jun CHOI ; Hang-Jea JANG ; Su Hwan LEE ; Young Seok LEE ; Gee Young SUH ; Woo-Sung CHOI ; Keu Sung LEE ; Hyung Won KIM ; Young-Gi MIN ; Seok Jeong LEE ; Chae-Man LIM
Journal of Korean Medical Science 2023;38(19):e141-
Background:
Current international guidelines recommend against deep sedation as it is associated with worse outcomes in the intensive care unit (ICU). However, in Korea the prevalence of deep sedation and its impact on patients in the ICU are not well known.
Methods:
From April 2020 to July 2021, a multicenter, prospective, longitudinal, noninterventional cohort study was performed in 20 Korean ICUs. Sedation depth extent was divided into light and deep using a mean Richmond Agitation–Sedation Scale value within the first 48 hours. Propensity score matching was used to balance covariables; the outcomes were compared between the two groups.
Results:
Overall, 631 patients (418 [66.2%] and 213 [33.8%] in the deep and light sedation groups, respectively) were included. Mortality rates were 14.1% and 8.4% in the deep and light sedation groups (P = 0.039), respectively. Kaplan-Meier estimates showed that time to extubation (P < 0.001), ICU length of stay (P = 0.005), and death P = 0.041) differed between the groups. After adjusting for confounders, early deep sedation was only associated with delayed time to extubation (hazard ratio [HR], 0.66; 95% confidence inter val [CI], 0.55– 0.80; P < 0.001). In the matched cohort, deep sedation remained significantly associated with delayed time to extubation (HR, 0.68; 95% 0.56–0.83; P < 0.001) but was not associated with ICU length of stay (HR, 0.94; 95% CI, 0.79–1.13; P = 0.500) and in-hospital mortality (HR, 1.19; 95% CI, 0.65–2.17; P = 0.582).
Conclusion
In many Korean ICUs, early deep sedation was highly prevalent in mechanically ventilated patients and was associated with delayed extubation, but not prolonged ICU stay or in-hospital death.
10.Definitions of Chronic Obstructive Pulmonary Disease and Chronic Obstructive Pulmonary Disease Exacerbation: A Modified Delphi Survey
Yong Bum PARK ; Jin Hwa LEE ; Seung Won RA ; Hye Yun PARK ; Ji Ye JUNG ; Young Ae KANG ; Chin Kook RHEE ; Deog Kyeom KIM ; Kwang Ha YOO ; Yong Il HWANG ; Seong Yong LIM ; Jae Seung LEE ; Kyung-Wook JO ; Yeon-Mok OH
Tuberculosis and Respiratory Diseases 2023;86(3):196-202
Background:
The Global Initiative for Chronic Obstructive Lung Disease (GOLD) update 2023 proposed new definitions of chronic obstructive pulmonary disease (COPD) and COPD exacerbation. However, an agreement on the definitions has not been made, either internationally or domestically. This study aimed to reach an agreement between experts on the new definitions of COPD and COPD exacerbation in South Korea.
Methods:
A modified Delphi method was used to make an agreement on the definitions of COPD and COPD exacerbation proposed by the GOLD update 2023. We performed two rounds of the survey including 15 Korean experts on COPD, asthma, and tuberculosis.
Results:
More than two-thirds of the experts agreed on 12 of the 13 statements related to the definitions of COPD and COPD exacerbation in the two rounds of the survey. The experts agreed on the definitions of COPD and COPD exacerbation that should be revised in line with the definitions proposed by the GOLD update 2023. However, the experts showed an uncertain opinion on the statement that the definition of COPD includes patients with persistent airflow obstruction due to bronchiectasis.
Conclusion
Based on this Delphi survey, experts’ agreement was made on the definitions of COPD and COPD exacerbation proposed by the GOLD update 2023.

Result Analysis
Print
Save
E-mail