1.Prognostic Value in Preoperative Veterans RAND-12 Mental Component Score on Clinical Outcomes for Patients Undergoing Minimally Invasive Lateral Lumbar Interbody Fusion
Ishan KHOSLA ; Fatima N. ANWAR ; Andrea M. ROCA ; Srinath S. MEDAKKAR ; Alexandra C. LOYA ; Keith R. MACGREGOR ; Omolabake O. OYETAYO ; Eileen ZHENG ; Aayush KAUL ; Jacob C. WOLF ; Vincent P. FEDERICO ; Gregory D. LOPEZ ; Arash J. SAYARI ; Kern SINGH
Neurospine 2024;21(1):361-371
Objective:
To evaluate the effect of Veterans RAND 12-item health survey mental composite score (VR-12 MCS) on postoperative patient-reported outcome measures (PROMs) after undergoing lateral lumbar interbody fusion.
Methods:
Retrospective data from a single-surgeon database created 2 cohorts: patients with VR-12 MCS ≥ 50 or VR-12 MCS < 50. Preoperative, 6-week, and final follow-up (FF)- PROMs including VR-12 MCS/physical composite score (PCS), 12-item Short Form health survey (SF-12) MCS/PCS, Patient-Reported Outcomes Measurement Information System Physical Function (PROMIS-PF), Patient Health Questionnaire-9 (PHQ-9), visual analogue scale (VAS)-back/leg pain (VAS-BP/LP), and Oswestry Disability Index (ODI) were collected. ∆6-week and ∆FF-PROMs were calculated. Minimal clinically important difference (MCID) achievement rates were determined from established cutoffs from the literature. For intercohort comparison, chi-square analysis was used for categorical variables, and Student t-test for continuous variables.
Results:
Seventy-nine patients were included; 25 were in VR-12 MCS < 50. Mean postoperative follow-up time was 17.12 ± 8.43 months. The VR-12 MCS < 50 cohort had worse VR-12 PCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, and ODI scores preoperatively (p ≤ 0.014, all), worse VR-12 MCS/PCS, SF-12 MCS, PROMIS-PF, PHQ-9, and ODI scores at 6-week postoperatively (p ≤ 0.039, all), and worse VR-12 MCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, VAS-LP, and ODI scores at FF (p ≤ 0.046, all). The VR-12 MCS < 50 cohort showed greater improvement in VR-12 MCS and SF-12 MCS scores at 6 weeks and FF (p ≤ 0.005, all). The VR-12 MCS < 50 cohort experienced greater MCID achievement for VR-12 MCS, SF-12 MCS, and PHQ-9 (p ≤ 0.006, all).
Conclusion
VR-12 MCS < 50 yielded worse mental health, physical function, pain and disability postoperatively, yet reported greater improvements in magnitude and MCID achievement for mental health.
2.Prognostic Value in Preoperative Veterans RAND-12 Mental Component Score on Clinical Outcomes for Patients Undergoing Minimally Invasive Lateral Lumbar Interbody Fusion
Ishan KHOSLA ; Fatima N. ANWAR ; Andrea M. ROCA ; Srinath S. MEDAKKAR ; Alexandra C. LOYA ; Keith R. MACGREGOR ; Omolabake O. OYETAYO ; Eileen ZHENG ; Aayush KAUL ; Jacob C. WOLF ; Vincent P. FEDERICO ; Gregory D. LOPEZ ; Arash J. SAYARI ; Kern SINGH
Neurospine 2024;21(1):361-371
Objective:
To evaluate the effect of Veterans RAND 12-item health survey mental composite score (VR-12 MCS) on postoperative patient-reported outcome measures (PROMs) after undergoing lateral lumbar interbody fusion.
Methods:
Retrospective data from a single-surgeon database created 2 cohorts: patients with VR-12 MCS ≥ 50 or VR-12 MCS < 50. Preoperative, 6-week, and final follow-up (FF)- PROMs including VR-12 MCS/physical composite score (PCS), 12-item Short Form health survey (SF-12) MCS/PCS, Patient-Reported Outcomes Measurement Information System Physical Function (PROMIS-PF), Patient Health Questionnaire-9 (PHQ-9), visual analogue scale (VAS)-back/leg pain (VAS-BP/LP), and Oswestry Disability Index (ODI) were collected. ∆6-week and ∆FF-PROMs were calculated. Minimal clinically important difference (MCID) achievement rates were determined from established cutoffs from the literature. For intercohort comparison, chi-square analysis was used for categorical variables, and Student t-test for continuous variables.
Results:
Seventy-nine patients were included; 25 were in VR-12 MCS < 50. Mean postoperative follow-up time was 17.12 ± 8.43 months. The VR-12 MCS < 50 cohort had worse VR-12 PCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, and ODI scores preoperatively (p ≤ 0.014, all), worse VR-12 MCS/PCS, SF-12 MCS, PROMIS-PF, PHQ-9, and ODI scores at 6-week postoperatively (p ≤ 0.039, all), and worse VR-12 MCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, VAS-LP, and ODI scores at FF (p ≤ 0.046, all). The VR-12 MCS < 50 cohort showed greater improvement in VR-12 MCS and SF-12 MCS scores at 6 weeks and FF (p ≤ 0.005, all). The VR-12 MCS < 50 cohort experienced greater MCID achievement for VR-12 MCS, SF-12 MCS, and PHQ-9 (p ≤ 0.006, all).
Conclusion
VR-12 MCS < 50 yielded worse mental health, physical function, pain and disability postoperatively, yet reported greater improvements in magnitude and MCID achievement for mental health.
3.Prognostic Value in Preoperative Veterans RAND-12 Mental Component Score on Clinical Outcomes for Patients Undergoing Minimally Invasive Lateral Lumbar Interbody Fusion
Ishan KHOSLA ; Fatima N. ANWAR ; Andrea M. ROCA ; Srinath S. MEDAKKAR ; Alexandra C. LOYA ; Keith R. MACGREGOR ; Omolabake O. OYETAYO ; Eileen ZHENG ; Aayush KAUL ; Jacob C. WOLF ; Vincent P. FEDERICO ; Gregory D. LOPEZ ; Arash J. SAYARI ; Kern SINGH
Neurospine 2024;21(1):361-371
Objective:
To evaluate the effect of Veterans RAND 12-item health survey mental composite score (VR-12 MCS) on postoperative patient-reported outcome measures (PROMs) after undergoing lateral lumbar interbody fusion.
Methods:
Retrospective data from a single-surgeon database created 2 cohorts: patients with VR-12 MCS ≥ 50 or VR-12 MCS < 50. Preoperative, 6-week, and final follow-up (FF)- PROMs including VR-12 MCS/physical composite score (PCS), 12-item Short Form health survey (SF-12) MCS/PCS, Patient-Reported Outcomes Measurement Information System Physical Function (PROMIS-PF), Patient Health Questionnaire-9 (PHQ-9), visual analogue scale (VAS)-back/leg pain (VAS-BP/LP), and Oswestry Disability Index (ODI) were collected. ∆6-week and ∆FF-PROMs were calculated. Minimal clinically important difference (MCID) achievement rates were determined from established cutoffs from the literature. For intercohort comparison, chi-square analysis was used for categorical variables, and Student t-test for continuous variables.
Results:
Seventy-nine patients were included; 25 were in VR-12 MCS < 50. Mean postoperative follow-up time was 17.12 ± 8.43 months. The VR-12 MCS < 50 cohort had worse VR-12 PCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, and ODI scores preoperatively (p ≤ 0.014, all), worse VR-12 MCS/PCS, SF-12 MCS, PROMIS-PF, PHQ-9, and ODI scores at 6-week postoperatively (p ≤ 0.039, all), and worse VR-12 MCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, VAS-LP, and ODI scores at FF (p ≤ 0.046, all). The VR-12 MCS < 50 cohort showed greater improvement in VR-12 MCS and SF-12 MCS scores at 6 weeks and FF (p ≤ 0.005, all). The VR-12 MCS < 50 cohort experienced greater MCID achievement for VR-12 MCS, SF-12 MCS, and PHQ-9 (p ≤ 0.006, all).
Conclusion
VR-12 MCS < 50 yielded worse mental health, physical function, pain and disability postoperatively, yet reported greater improvements in magnitude and MCID achievement for mental health.
4.Prognostic Value in Preoperative Veterans RAND-12 Mental Component Score on Clinical Outcomes for Patients Undergoing Minimally Invasive Lateral Lumbar Interbody Fusion
Ishan KHOSLA ; Fatima N. ANWAR ; Andrea M. ROCA ; Srinath S. MEDAKKAR ; Alexandra C. LOYA ; Keith R. MACGREGOR ; Omolabake O. OYETAYO ; Eileen ZHENG ; Aayush KAUL ; Jacob C. WOLF ; Vincent P. FEDERICO ; Gregory D. LOPEZ ; Arash J. SAYARI ; Kern SINGH
Neurospine 2024;21(1):361-371
Objective:
To evaluate the effect of Veterans RAND 12-item health survey mental composite score (VR-12 MCS) on postoperative patient-reported outcome measures (PROMs) after undergoing lateral lumbar interbody fusion.
Methods:
Retrospective data from a single-surgeon database created 2 cohorts: patients with VR-12 MCS ≥ 50 or VR-12 MCS < 50. Preoperative, 6-week, and final follow-up (FF)- PROMs including VR-12 MCS/physical composite score (PCS), 12-item Short Form health survey (SF-12) MCS/PCS, Patient-Reported Outcomes Measurement Information System Physical Function (PROMIS-PF), Patient Health Questionnaire-9 (PHQ-9), visual analogue scale (VAS)-back/leg pain (VAS-BP/LP), and Oswestry Disability Index (ODI) were collected. ∆6-week and ∆FF-PROMs were calculated. Minimal clinically important difference (MCID) achievement rates were determined from established cutoffs from the literature. For intercohort comparison, chi-square analysis was used for categorical variables, and Student t-test for continuous variables.
Results:
Seventy-nine patients were included; 25 were in VR-12 MCS < 50. Mean postoperative follow-up time was 17.12 ± 8.43 months. The VR-12 MCS < 50 cohort had worse VR-12 PCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, and ODI scores preoperatively (p ≤ 0.014, all), worse VR-12 MCS/PCS, SF-12 MCS, PROMIS-PF, PHQ-9, and ODI scores at 6-week postoperatively (p ≤ 0.039, all), and worse VR-12 MCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, VAS-LP, and ODI scores at FF (p ≤ 0.046, all). The VR-12 MCS < 50 cohort showed greater improvement in VR-12 MCS and SF-12 MCS scores at 6 weeks and FF (p ≤ 0.005, all). The VR-12 MCS < 50 cohort experienced greater MCID achievement for VR-12 MCS, SF-12 MCS, and PHQ-9 (p ≤ 0.006, all).
Conclusion
VR-12 MCS < 50 yielded worse mental health, physical function, pain and disability postoperatively, yet reported greater improvements in magnitude and MCID achievement for mental health.
5.Prognostic Value in Preoperative Veterans RAND-12 Mental Component Score on Clinical Outcomes for Patients Undergoing Minimally Invasive Lateral Lumbar Interbody Fusion
Ishan KHOSLA ; Fatima N. ANWAR ; Andrea M. ROCA ; Srinath S. MEDAKKAR ; Alexandra C. LOYA ; Keith R. MACGREGOR ; Omolabake O. OYETAYO ; Eileen ZHENG ; Aayush KAUL ; Jacob C. WOLF ; Vincent P. FEDERICO ; Gregory D. LOPEZ ; Arash J. SAYARI ; Kern SINGH
Neurospine 2024;21(1):361-371
Objective:
To evaluate the effect of Veterans RAND 12-item health survey mental composite score (VR-12 MCS) on postoperative patient-reported outcome measures (PROMs) after undergoing lateral lumbar interbody fusion.
Methods:
Retrospective data from a single-surgeon database created 2 cohorts: patients with VR-12 MCS ≥ 50 or VR-12 MCS < 50. Preoperative, 6-week, and final follow-up (FF)- PROMs including VR-12 MCS/physical composite score (PCS), 12-item Short Form health survey (SF-12) MCS/PCS, Patient-Reported Outcomes Measurement Information System Physical Function (PROMIS-PF), Patient Health Questionnaire-9 (PHQ-9), visual analogue scale (VAS)-back/leg pain (VAS-BP/LP), and Oswestry Disability Index (ODI) were collected. ∆6-week and ∆FF-PROMs were calculated. Minimal clinically important difference (MCID) achievement rates were determined from established cutoffs from the literature. For intercohort comparison, chi-square analysis was used for categorical variables, and Student t-test for continuous variables.
Results:
Seventy-nine patients were included; 25 were in VR-12 MCS < 50. Mean postoperative follow-up time was 17.12 ± 8.43 months. The VR-12 MCS < 50 cohort had worse VR-12 PCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, and ODI scores preoperatively (p ≤ 0.014, all), worse VR-12 MCS/PCS, SF-12 MCS, PROMIS-PF, PHQ-9, and ODI scores at 6-week postoperatively (p ≤ 0.039, all), and worse VR-12 MCS, SF-12 MCS, PROMIS-PF, PHQ-9, VAS-BP, VAS-LP, and ODI scores at FF (p ≤ 0.046, all). The VR-12 MCS < 50 cohort showed greater improvement in VR-12 MCS and SF-12 MCS scores at 6 weeks and FF (p ≤ 0.005, all). The VR-12 MCS < 50 cohort experienced greater MCID achievement for VR-12 MCS, SF-12 MCS, and PHQ-9 (p ≤ 0.006, all).
Conclusion
VR-12 MCS < 50 yielded worse mental health, physical function, pain and disability postoperatively, yet reported greater improvements in magnitude and MCID achievement for mental health.
6.Clinicopathological analysis of EB virus-positive mucocutaneous ulcer.
X ZHANG ; X G ZHOU ; M YANG ; Y MIAO ; R G XING ; Y Y ZHENG ; Y L ZHANG ; J L XIE
Chinese Journal of Pathology 2023;52(10):1037-1039
7.Effect of Echinococcus multilocularis infection on Tim3 expression in spleen natural killer cells of mice.
Y SHI ; A ABIDAN ; D LI ; R ZIBIGU ; M WANG ; X ZHENG ; X KANG ; H WANG ; J LI ; C ZHANG
Chinese Journal of Schistosomiasis Control 2023;35(4):366-373
OBJECTIVE:
To investigate the effect of Echinococcus multilocularis infection on Tim3 expression and its co-expression with immune checkpoint molecules 2B4 and LAG3 in spleen natural killer (NK) cells of mice.
METHODS:
C57BL/6 mice, each weighing (20 ± 2) g, were randomly divided into a high-dose infection group (15 mice), a low-dose infection group (13 mice), and a control group (11 mice). Mice in the high- and low-dose infection groups were inoculated with 2 000 and 50 Echinococcus multilocularis protoscolices via the hepatic portal vein, while animals in the control group was injected with an equivalent amount of physiological saline via the hepatic portal vein. Mouse spleen cells were harvested 12 and 24 weeks post-infection, and Tim3 expression and its co-expression with 2B4 and LAG3 in NK cells were detected using flow cytometry.
RESULTS:
There were significant differences in the proportions of Tim3 expression (F = 13.559, P < 0.001) and Tim3 and 2B4 co-expression (F = 12.465, P < 0.001) in mouse spleen NK cells among groups 12 weeks post-infection with E. multilocularis, and the proportion of Tim3 expression was significantly higher in mouse spleen NK cells in the low-dose infection group [(23.84 ± 2.28)%] than in the high-dose infection group [(15.72 ± 3.67)%] and the control group [(16.14 ± 3.83)%] (both P values < 0.01), while the proportion of Tim3 and 2B4 co-expression was significantly higher in mouse spleen NK cells in the low-dose infection group [(22.20 ± 2.13)%] than in the high-dose infection group [(14.17 ± 3.81)%] and the control group [(15.20 ± 3.77)%] (both P values < 0.01). There were significant differences in the proportions of Tim3 expression (F = 5.243, P < 0.05) and Tim3 and 2B4 co-expression (F = 4.659, P < 0.05) in mouse spleen NK cells among groups 24 weeks post-infection with E. multilocularis infection, and the proportions of Tim3 expression and Tim3 and 2B4 co-expression were significantly lower in mouse spleen NK cells in the high-dose infection group [(20.55 ± 7.04)% and (20.98 ± 7.12)%] than in the control group [(31.38 ± 3.19)% and (31.25 ± 3.06)%] (both P values < 0.05), and there were no significantly difference between the proportions of Tim3 expression and Tim3 and 2B4 co-expression in splenic NK cells in the low-dose infection group [(26.80 ± 6.47)% and (26.48 ± 6.48)%] and the control group (both P > 0.05). There were no significant differences in the proportions of Tim3 and LAG3 co-expression in mouse spleen NK cells among groups 12 (F = 2.283, P > 0.05) and 24 weeks post-infection (F = 0.375, P > 0.05). In the low-dose infection group, there were no significant differences in the proportions of Tim3 expression or Tim3 and 2B4 co-expression in mouse spleen NK cells 12 (t = -1.137, P > 0.05) or 24 weeks post-infection (t = -1.658, P > 0.05), and the proportion of Tim3 and LAG3 co-expression increased in mouse spleen NK cells 24 weeks post-infection relative to 12 weeks post-infection (t = -5.261, P < 0.01). In the highdose infection group, there was no significant difference in the proportion of Tim3 expression in mouse spleen NK cells 12 and 24 weeks post-infection (t = -1.546, P > 0.05); however, the proportions of Tim3 co-expression with 2B4 and LAG3 increased in mouse splenic NK cells 24 weeks post-infection relative to 12 weeks post-infection (t = -2.425 and -4.745, both P values < 0.05).
CONCLUSIONS
The Tim3 expression and Tim3 co-expression with LAG3 and 2B4 on spleen NK cells is affected by doses of E. multilocularis infection and disease stages, and present different phenotypes during the course of alveolar echinococcosis. NK cells tend to form an immunosuppressive phenotype with the progression of E. multilocularis infection, which facilitates immune escape and chronic parasitism of E. multilocularis.
Animals
;
Mice
;
Hepatitis A Virus Cellular Receptor 2/genetics*
;
Killer Cells, Natural
;
Mice, Inbred C57BL
;
Spleen
8.Systematic and other reviews: criteria and complexities.
Robert T SATALOFF ; Matthew L BUSH ; Rakesh CHANDRA ; Douglas CHEPEHA ; Brian ROTENBERG ; Edward W FISHER ; David GOLDENBERG ; Ehab Y HANNA ; Joseph E KERSCHNER ; Dennis H KRAUS ; John H KROUSE ; Daqing LI ; Michael LINK ; Lawrence R LUSTIG ; Samuel H SELESNICK ; Raj SINDWANI ; Richard J SMITH ; James R TYSOME ; Peter C WEBER ; D Bradley WELLING ; Xinhao ZHANG ; Zheng LIU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2021;56(7):687-690
10.DPHL:A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery
Zhu TIANSHENG ; Zhu YI ; Xuan YUE ; Gao HUANHUAN ; Cai XUE ; Piersma R. SANDER ; Pham V. THANG ; Schelfhorst TIM ; Haas R.G.D. RICHARD ; Bijnsdorp V. IRENE ; Sun RUI ; Yue LIANG ; Ruan GUAN ; Zhang QIUSHI ; Hu MO ; Zhou YUE ; Winan J. Van Houdt ; Tessa Y.S. Le Large ; Cloos JACQUELINE ; Wojtuszkiewicz ANNA ; Koppers-Lalic DANIJELA ; B(o)ttger FRANZISKA ; Scheepbouwer CHANTAL ; Brakenhoff H. RUUD ; Geert J.L.H. van Leenders ; Ijzermans N.M. JAN ; Martens W.M. JOHN ; Steenbergen D.M. RENSKE ; Grieken C. NICOLE ; Selvarajan SATHIYAMOORTHY ; Mantoo SANGEETA ; Lee S. SZE ; Yeow J.Y. SERENE ; Alkaff M.F. SYED ; Xiang NAN ; Sun YAOTING ; Yi XIAO ; Dai SHAOZHENG ; Liu WEI ; Lu TIAN ; Wu ZHICHENG ; Liang XIAO ; Wang MAN ; Shao YINGKUAN ; Zheng XI ; Xu KAILUN ; Yang QIN ; Meng YIFAN ; Lu CONG ; Zhu JIANG ; Zheng JIN'E ; Wang BO ; Lou SAI ; Dai YIBEI ; Xu CHAO ; Yu CHENHUAN ; Ying HUAZHONG ; Lim K. TONY ; Wu JIANMIN ; Gao XIAOFEI ; Luan ZHONGZHI ; Teng XIAODONG ; Wu PENG ; Huang SHI'ANG ; Tao ZHIHUA ; Iyer G. NARAYANAN ; Zhou SHUIGENG ; Shao WENGUANG ; Lam HENRY ; Ma DING ; Ji JIAFU ; Kon L. OI ; Zheng SHU ; Aebersold RUEDI ; Jimenez R. CONNIE ; Guo TIANNAN
Genomics, Proteomics & Bioinformatics 2020;18(2):104-119
To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipe-line and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to gen-erate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.

Result Analysis
Print
Save
E-mail