1.Pien Tze Huang Attenuates Cell Proliferation and Stemness Promoted by miR-483-5p in Hepatocellular Carcinoma Cells.
Li-Hui WEI ; Xi CHEN ; A-Ling SHEN ; Yi FANG ; Qiu-Rong XIE ; Zhi GUO ; Thomas J SFERRA ; You-Qin CHEN ; Jun PENG
Chinese journal of integrative medicine 2025;31(9):782-791
OBJECTIVE:
To investigate the effect of miR-483-5p on hepatocellular carcinoma (HCC) cells proliferation and stemness, as well as the attenuating effect of Pien Tze Huang (PZH).
METHODS:
Differentially expressed miRNA between HepG2 cells and hepatic cancer stem-like cells (HCSCs) were identified by a miRNA microarray assay. miR-483-5p mimics were transfected into HepG2 cells to explore the effects of miR-483-5p on cell proliferation and stemness. HepG2 cells and HCSCs were treated with PZH (0, 0.25, 0.50 and 0.75 mg/mL) to explore the effects of PZH on the proliferation and stemness, both in non-induced state and the state induced by miR-483-5p mimics.
RESULTS:
miR-483-5p was significantly up-regulated in HCSCs and its overexpression increased cell proliferation and stemness in HepG2 cells (P<0.05). PZH not only significantly inhibited proliferation in HepG2 cells, but also significantly suppressed the cell proliferation and self-renewal of HCSCs (P<0.05). The effects of miR-483-5p mimics on proliferation and stemness of HepG2 cells were partially abolished by PZH.
CONCLUSIONS
miR-483-5p promotes proliferation and enhances stemness of HepG2 cells, which were attenuated by PZH, demonstrating that miR-483-5p is a potential molecular target for the treatment of HCC and provide experimental evidence to support clinical use of PZH for patients with HCC.
Humans
;
MicroRNAs/metabolism*
;
Cell Proliferation/drug effects*
;
Liver Neoplasms/drug therapy*
;
Carcinoma, Hepatocellular/drug therapy*
;
Hep G2 Cells
;
Neoplastic Stem Cells/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Gene Expression Regulation, Neoplastic/drug effects*
2.Engineering cellular dephosphorylation boosts (+)-borneol production in yeast.
Haiyan ZHANG ; Peng CAI ; Juan GUO ; Jiaoqi GAO ; Linfeng XIE ; Ping SU ; Xiaoxin ZHAI ; Baolong JIN ; Guanghong CUI ; Yongjin J ZHOU ; Luqi HUANG
Acta Pharmaceutica Sinica B 2025;15(2):1171-1182
(+)-Borneol, the main component of "Natural Borneol" in the Chinese Pharmacopoeia, is a high-end spice and precious medicine. Plant extraction cannot meet the increasing demand for (+)-borneol, while microbial biosynthesis offers a sustainable supply route. However, its production was extremely low compared with other monoterpenes, even with extensively optimizing the mevalonate pathway. We found that the key challenge is the complex and unusual dephosphorylation reaction of bornyl diphosphate (BPP), which suffers the side-reaction and the competition from the cellular dephosphorylation process, especially lipid metabolism, thus limiting (+)-borneol synthesis. Here, we systematically optimized the dephosphorylation process by identifying, characterizing phosphatases, and balancing cellular dephosphorylation metabolism. For the first time, we identified two endogenous phosphatases and seven heterologous phosphatases, which significantly increased (+)-borneol production by up to 152%. By engineering BPP dephosphorylation and optimizing the MVA pathway, the production of (+)-borneol was increased by 33.8-fold, which enabled the production of 753 mg/L under fed-batch fermentation in shake flasks, so far the highest reported in the literature. This study showed that rewiring dephosphorylation metabolism was essential for high-level production of (+)-borneol in Saccharomyces cerevisiae, and balancing cellular dephosphorylation is also helpful for efficient biosynthesis of other terpenoids since all whose biosynthesis involves the dephosphorylation procedure.
3.Erratum: Publisher erratum to "Fenofibrate-promoted hepatomegaly and liver regeneration are PPARα-dependent and partially related to the YAP pathway" Acta Pharmaceutica Sinica B 14 (2024) 2992-3008.
Shicheng FAN ; Yue GAO ; Pengfei ZHAO ; Guomin XIE ; Yanying ZHOU ; Xiao YANG ; Xuan LI ; Shuaishuai ZHANG ; Frank J GONZALEZ ; Aijuan QU ; Min HUANG ; Huichang BI
Acta Pharmaceutica Sinica B 2025;15(6):3354-3354
[This corrects the article DOI: 10.1016/j.apsb.2024.03.030.].
4.Anti-cancer and anti-inflammatory effects of flavan-4-ol and flavan glycosides from the roots of Pronephrium penangianum.
Feibing HUANG ; Yong YANG ; Qingling XIE ; Hanwen YUAN ; Muhammad AAMER ; Yuqing JIAN ; Ye ZHANG ; Wei WANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):593-603
Five new flavan-4-ol glycosides jixueqiosides A-E (1-5) and two new flavan glycosides jixueqiosides F and G (6 and 7), along with twelve known flavan-4-ol glycosides (8-19), were isolated from the roots of Pronephrium penangianum. Comprehensive spectral analyses, X-ray single-crystal diffraction, and theoretical electronic circular dichroism (ECD) calculations established structures and absolute configurations. A single crystal structure of flavan-4-ol glycoside (14) was reported for the first time, while the characteristic ECD and NMR data for all isolated flavan-4-ol glycosides (1-5 , 8-19) were analyzed, establishing a set of empirical rules. Activity screening of these isolates showed that 8 and 9 could inhibit the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 7.93 ? 2.85 ?mol?L-1 and 5.87 ? 1.58 ?mol?L-1 (MDA-MB-231), and 2.21 ? 1.38 ?mol?L-1 and 3.52 ? 1.55 ?mol?L-1 (MCF-7), respectively. Western blotting and flow cytometry analyses demonstrated that 8 and 9 dose-dependently induced apoptosis in MDA-MB-231 cells by up-regulating BAX, activating caspase-3 and down-regulating BCL-2. Additionally, compound 8 affected autophagy-related proteins, increasing the ratio of LC3-II/LC3-I and Beclin-1 levels to inhibit MDA-MB-231 cell proliferation. Moreover, anti-inflammatory studies indicated that 2, 3, 7, 13, 14, and 18 moderately inhibited tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and nitric oxide (NO) release.
Humans
;
Plant Roots/chemistry*
;
Glycosides/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Flavonoids/isolation & purification*
;
Cell Proliferation/drug effects*
;
Antineoplastic Agents, Phytogenic/isolation & purification*
;
Molecular Structure
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Tumor Necrosis Factor-alpha/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Interleukin-6/immunology*
;
Animals
;
Mice
6.A hnRNPA2B1 agonist effectively inhibits HBV and SARS-CoV-2 omicron in vivo.
Daming ZUO ; Yu CHEN ; Jian-Piao CAI ; Hao-Yang YUAN ; Jun-Qi WU ; Yue YIN ; Jing-Wen XIE ; Jing-Min LIN ; Jia LUO ; Yang FENG ; Long-Jiao GE ; Jia ZHOU ; Ronald J QUINN ; San-Jun ZHAO ; Xing TONG ; Dong-Yan JIN ; Shuofeng YUAN ; Shao-Xing DAI ; Min XU
Protein & Cell 2023;14(1):37-50
The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.
Animals
;
Mice
;
Antiviral Agents/pharmacology*
;
COVID-19
;
Hepatitis B virus
;
Interferon Type I/metabolism*
;
SARS-CoV-2/drug effects*
;
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors*
7.Platelet RNA enables accurate detection of ovarian cancer: an intercontinental, biomarker identification study.
Yue GAO ; Chun-Jie LIU ; Hua-Yi LI ; Xiao-Ming XIONG ; Gui-Ling LI ; Sjors G J G IN 'T VELD ; Guang-Yao CAI ; Gui-Yan XIE ; Shao-Qing ZENG ; Yuan WU ; Jian-Hua CHI ; Jia-Hao LIU ; Qiong ZHANG ; Xiao-Fei JIAO ; Lin-Li SHI ; Wan-Rong LU ; Wei-Guo LV ; Xing-Sheng YANG ; Jurgen M J PIEK ; Cornelis D DE KROON ; C A R LOK ; Anna SUPERNAT ; Sylwia ŁAPIŃSKA-SZUMCZYK ; Anna ŁOJKOWSKA ; Anna J ŻACZEK ; Jacek JASSEM ; Bakhos A TANNOUS ; Nik SOL ; Edward POST ; Myron G BEST ; Bei-Hua KONG ; Xing XIE ; Ding MA ; Thomas WURDINGER ; An-Yuan GUO ; Qing-Lei GAO
Protein & Cell 2023;14(6):579-590
Platelets are reprogrammed by cancer via a process called education, which favors cancer development. The transcriptional profile of tumor-educated platelets (TEPs) is skewed and therefore practicable for cancer detection. This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n = 3; Netherlands, n = 5; Poland, n = 1) between September 2016 and May 2019. The main outcomes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889-0.948), 0.923 (0.855-0.990), 0.918 (0.872-0.963), and 0.887 (0.813-0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889-0.955) in the combined validation cohort; 0.955 (0.912-0.997) in VC1; 0.939 (0.901-0.977) in VC2; 0.917 (0.824-1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, and early-stage ovarian cancer. However, these observations warrant prospective validations in a larger population before clinical utilities.
Humans
;
Female
;
Blood Platelets/pathology*
;
Biomarkers, Tumor/genetics*
;
Ovarian Neoplasms/pathology*
;
China
8.Values of ATX in predicting disease progression in patients with PBC and PBC related HCC.
M Y ZHANG ; H XIE ; J ZHAO ; Q S LIANG ; L HAN ; X R ZHAI ; B S LI ; Z S ZOU ; Y SUN
Chinese Journal of Hepatology 2023;31(6):40-46
Objective: To clarify the values of autotaxin (ATX) in patients with primary biliary cholangitis (PBC) and PBC-related hepatocellular carcinoma (HCC). Methods: 179 patients with PBC were selected from prospective cohorts of autoimmune liver diseases at the time of first diagnosis of PBC in Department of Hepatology, the Fifth Medical Center of PLA General Hospital, from January 2016 to January 2018, all patients with PBC received UDCA therapy, primary endpoint was event of HCC, the follow-up period was censored at the date of HCC. The relationship between level of ATX and clinical features in patients with PBC and its potential value in predicting disease progression and PBC-related HCC were analyzed. Results: The ATX level in the peripheral blood of patients with PBC was significantly higher than that of alcoholic liver cirrhosis(ALC) (t = 3.278, P = 0.001) and healthy controls(HC) (t = 6.594, P < 0.001), however, when comparing PBC to non-PBC related HCC, no significant difference was found between the groups(t=-0.240, P = 0.811). Consistent with peripheral blood levels, histochemical staining indicated that ATX in the liver of patients with PBC was significantly higher than that of HC (Z=-3.633, P < 0.001) and ALC (Z=-3.283, P < 0.001), and the expression of ATX in PBC with advanced histological stage was significantly higher than PBC with early stage (Z=-2.018, P = 0.034). The baseline ATX level in PBC patients without developing to HCC during follow-up had significant difference to patients with developing to HCC (228.451 ± 124.093 ng/ml vs 301.583 ± 100.512 ng/ml, t = 2.339, P = 0.021). The result in multivariate logistic regression analysis showed that ATX were independent predictors of PBC related HCC(OR 1.245, 95%CI 1.097-1.413). The optimal critical value of peripheral blood ATX level at baseline for predicting HCC was 235.254 ng/ml, with the cut-off value of 0.714 in AUC of the ROC (95% CI was 0.597~ 0.857), sensitivity and specificity were 84.6% and 59.0%, respectively. Conclusion: ATX level was significantly higher in PBC patients over controls, and it's concentration was correlated with UDCA efficacy and fibrosis stage. ATX has potential values in predicting disease progression and PBC-related HCC.
10.Clinicopathological analysis of EB virus-positive mucocutaneous ulcer.
X ZHANG ; X G ZHOU ; M YANG ; Y MIAO ; R G XING ; Y Y ZHENG ; Y L ZHANG ; J L XIE
Chinese Journal of Pathology 2023;52(10):1037-1039

Result Analysis
Print
Save
E-mail