1.Cell metabolomics study of ginkgo flavone aglycone combined with doxorubicin against liver cancer in synergy.
Yuan LU ; Yan-Li WANG ; Zhong-Jun SONG ; Xiao-Qing ZHU ; Chun-Hua LIU ; Ji-Yu CHEN ; Yong-Jun LI ; Yan HE
China Journal of Chinese Materia Medica 2022;47(18):5040-5051
Ultra-high-performance liquid chromatography-Q exactive orbitrap tandem mass spectrometry(UHPLC-QEOrbitrap-MS/MS) was used to explore the inhibitory effect and mechanism of ginkgo flavone aglycone(GA) combined with doxorubicin(DOX) on H22 cells. The effects of different concentrations of GA and DOX on the viability of H22 cells were investigated, and combination index(CI) was used to evaluate the effects. In the experiments, control(CON) group, DOX group, GA group, and combined GA and DOX(GDOX) group were constructed. Then the metabolomics strategy was employed to explore the metabolic markers that were significantly changed after combination therapy on the basis of single medication treatment, and by analyzing their biological significance, the effect and mechanism of the anti-tumor effect of GA combined with DOX were explained. The results revealed that when 30 μg·mL~(-1) GA and 0.5 μmol·L~(-1) DOX was determined as the co-administration concentration, the CI value was 0.808, indicating that the combination of GA and DOX had a synergistic anti-tumor effect. Metabolomics analysis identified 23 metabolic markers, including L-arginine, L-tyrosine and L-valine, mostly amino acids. Compared with the CON group, 22 and 17 metabolic markers were significantly down-regulated after DOX treatment and GA treatment, respectively. Compared with the DOX and GA groups, the treatment of GA combined with DOX further down-regulated the levels of these metabolic markers in liver cancer, which might contribute to the synergistic effect of the two. Five key metabolic pathways were found in pathway enrichment analysis, including glutathione metabolism, phenylalanine metabolism, arginine and proline metabolism, β-alanine metabolism, and valine, leucine and isoleucine degradation. These findings demonstrated that the combination of GA and DOX remarkably inhibited the viability of H22 cells and exerted a synergistic anti-tumor effect. The mechanism might be related to the influence of the energy supply of tumor cells by interfering with the metabolism of various amino acids.
Arginine/therapeutic use*
;
Doxorubicin/therapeutic use*
;
Flavones/therapeutic use*
;
Ginkgo biloba/chemistry*
;
Glutathione
;
Humans
;
Isoleucine/therapeutic use*
;
Leucine/therapeutic use*
;
Liver Neoplasms/drug therapy*
;
Metabolomics/methods*
;
Phenylalanine/therapeutic use*
;
Proline
;
Tandem Mass Spectrometry/methods*
;
Tyrosine/therapeutic use*
;
Valine/therapeutic use*
;
beta-Alanine/therapeutic use*
2.Analgesic Activity of Jin Ling Zi Powder and Its Single Herbs: A Serum Metabonomics Study.
Cui-Fang WANG ; Xiao-Rong CAI ; Yan-Ni CHI ; Xiao-Yao MIAO ; Jian-Yun YANG ; Bing-Kun XIAO ; Rong-Qing HUANG
Chinese journal of integrative medicine 2022;28(11):1007-1014
OBJECTIVE:
To compare the analgesic effect of Jin Ling Zi Powder (JLZ) and its two single herbs.
METHODS:
The hot plate method was used to induce pain. Totally 36 mice were randomly divided into 6 groups by a complete random design, including control, model, aspirin (ASP, 0.14 g/kg body weight), JLZ (14 g/kg body weight), Corydalis yanhusuo (YHS, 14 g/kg body weight), and Toosendan Fructus (TF, 14 g/kg body weight) groups, 6 mice in each group. The mice in the control and model groups were given the same volume of saline, daily for 2 consecutive weeks. At 30, 60, 90, and 120 min after the last administration, the pain threshold of mice in each group was measured, and the improvement rate of pain threshold was calculated. Serum endogenous metabolites were analyzed by gas chromatography-mass spectrometry (GC-MS).
RESULTS:
There was no statistical difference in pain threshold among groups before administration (P>0.05). After 2 weeks of administration, compared with the model group, the pain threshold in JLZ, YHS, TF and ASP groups were increased to varying degrees (P<0.05). JLZ had the best analgesic effect and was superior to YHS and TF groups. A total of 14 potential biomarkers were screened in serum data analysis and potential biomarkers levels were all reversed to different degrees after the treatment with JLZ and its single herbs. These potential biomarkers were mainly related to glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism, valine, leucine and isoleucine biosynthesis, aminoacyl-tRNA biosynthesis and inositol phosphate metabolism.
CONCLUSIONS
The analgesic mechanism of JLZ and YHS was mainly due to the combination of glycine and its receptor, producing post-synaptic potential, reducing the excitability of neurons, and weakening the afferent effect of painful information.
Animals
;
Mice
;
Analgesics/therapeutic use*
;
Aspirin/pharmacology*
;
Biomarkers
;
Body Weight
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycine
;
Glyoxylates
;
Inositol Phosphates
;
Isoleucine
;
Leucine
;
Metabolomics/methods*
;
Powders
;
RNA, Transfer
;
Serine
;
Threonine
;
Valine