1.Dexamethasone enhances phospholipase D activity in M-1 cells.
Won Jin KIM ; Min Jung LEE ; Myung Ae PARK ; Jin Sup JUNG ; David J UHLINGER ; Jong Young KWAK
Experimental & Molecular Medicine 2000;32(3):170-177
Phospholipase D (PLD) is an enzyme involved in signal transduction and widely distributed in mammalian cells. The signal transduction pathways and role for phospholipid metabolism during hormonal response in cortical collecting duct remain partly undefined. It has been reported that dexamethasone increases transepithelial transport in M-1 cells that are derived from the mouse cortical collecting duct. We investigated the expression and activity of PLD in M-1 cells. Basal PLD activity of M-1 cells cultured in the presence of dexamethasone (5 microM) was higher than in the absence of dexamethasone. Dexamethasone and ATP activated PLD in M-1 cells but phorbol ester did not stimulate PLD activity. Vasopressin, bradykinin, dibutyryl cyclic AMP, and ionomycin were ineffective in activating PLD of the cells. The PLD2 isotype was detected by immunoprecipitation but PLD1 was not detected in M-1 cells. Addition of GTPgammaS and ADP-ribosylation factor or phosphatidylinositiol 4,5-bisphosphate to digitonin-permeabilized cells did not augment PLD activity. In intact cells PLD activity was increased by sodium oleate but there was no significant change between dexamethasone treated- and untreated cells by oleate. These results suggest that at least two types of PLD are present in M-1 cells and PLD plays a role in the corticosteroid-mediated response of cortical collecting duct cells.
Animal
;
Biological Transport/drug effects
;
Dexamethasone/pharmacology*
;
Dose-Response Relationship, Drug
;
Drug Interactions
;
Glycerophospholipids/analysis
;
Isoenzymes/drug effects
;
Kidney Cortex/cytology
;
Kidney Tubules, Collecting/drug effects*
;
Kidney Tubules, Collecting/cytology
;
Mice
;
Mice, Transgenic
;
Oleic Acid/pharmacology
;
Phospholipase D/drug effects*
2.Influence of selenium induced oxidative stress on spermatogenesis and lactate dehydrogenase-X in mice testis.
Asian Journal of Andrology 2004;6(3):227-232
AIMTo evaluate the effect of oxidative stress on the spermatogenesis and lactate dehydrogenase-X (LDH-X) activity in mouse testis.
METHODSFor creating different levels of oxidative stress in mice, three selenium (Se) level diets were fed in separate groups for 8 weeks. Group 1 animals were fed yeast-based Se-deficient (0.02 ppm) diet. Group 2 and Group 3 animals were fed with the same diet supplemented with 0.2 ppm and 1 ppm Se as sodium selenite, respectively. After 8 weeks, biochemical and histopathological observations of the testis were carried out. LDH-X levels in the testis were analyzed by western immunoblot and ELISA.
RESULTSA significant decrease in testis Se level was observed in Group 1 animals, whereas it was enhanced in Group 3 as compared to Group 2. The glutathione peroxidase (GSH-Px) activity was significantly reduced in both the liver and testis in Group 1, but not in Group 2 and 3. A significant increase in the testis glutathione-S-transferase (GST) activity was observed in Group 1, whereas no significant change was seen in Groups 2 and 3. Histological analysis of testis revealed a normal structure in Group 2. A significant decrease in the germ cell population in Group 1 was observed as compared to Group 2 with the spermatids and mature sperm affected the most. Decrease in the lumen size was also observed. In the Se-excess group (Group 3), displacement of germ cell population was observed. Further, a decrease in the LDH-X level in testis was observed in Group 1.
CONCLUSIONExcessive oxidative stress in the Se deficient group, as indicated by changes in the GSH-Px/GST activity, affects the spermatogenic process with a reduction in mature sperm and in turn the LDH-X level.
Animals ; Diet ; Glutathione Transferase ; metabolism ; Isoenzymes ; drug effects ; metabolism ; L-Lactate Dehydrogenase ; drug effects ; metabolism ; Male ; Mice ; Mice, Inbred BALB C ; Oxidative Stress ; drug effects ; physiology ; Selenium ; deficiency ; pharmacokinetics ; pharmacology ; Spermatogenesis ; physiology ; Testis ; drug effects ; enzymology ; pathology ; physiology
3.Response of superoxide dismutase, catalase, and ATPase activity in bacteria exposed to acetamiprid.
Xiao-Hua YAO ; Hang MIN ; Zhen-Mei LV
Biomedical and Environmental Sciences 2006;19(4):309-314
OBJECTIVETo investigate how acetamiprid, a new insecticide, affects the activity of superoxide dismutase (SOD), catalase (CAT), and ATPase and the SOD isozyme patterns in two G bacteria, E. coli K12 and Pse.FH2, and one G+ bacterum, B. subtilis.
METHODSThe SOD, CAT, and ATPase specific activities of cell lysates were determined spectrophotometrically at 550 nm, 240 nm, and 660 nm, respectively, with kits A001, A016, and A007. SOD isozyme patterns were detected by native PAGE analysis.
RESULTSSOD and CAT activities in the tested bacteria increased significantly in a concentration-dependent manner after different concentrations of acetamiprid were applied. The activity of SOD in B. subtilis and Pse.FH2 was stimulated and reached the highest level after treatment with 100 mg/L acetamiprid for 0.5 h. For Pse.FH2, there was another stimulation of SOD activity after acetamiprid application for about 8.0 h and the second stimulation was stronger than the first. The stimulation by acetamiprid showed a relative lag for E. coli K12. Acetamiprid seemed to exhibit a similar effect on CAT activity of the two G bacteria and had an evident influence on ATPase activity in the three bacteria within a relatively short period. Only one SOD isozyme was detectable in Pse.FH2 and B. subtilis, while different isozyme compositions in E. coli could be detected by native PAGE analysis.
CONCLUSIONAcetamiprid causes a certain oxidative stress on the three bacteria which may not only elevate SOD and CAT activities but also generate new SOD isozymes to antagonize oxidative stress. However, this oxidative stress lasts for a relatively short time and does not cause a long-term damage.
Adenosine Triphosphatases ; metabolism ; Bacillus ; drug effects ; enzymology ; Bacteria ; drug effects ; enzymology ; Catalase ; metabolism ; Escherichia coli ; drug effects ; enzymology ; Insecticides ; pharmacology ; Isoenzymes ; metabolism ; Neonicotinoids ; Pseudomonas ; drug effects ; enzymology ; Pyridines ; pharmacology ; Superoxide Dismutase ; metabolism
4.PKC isoform selectivity and radiation-induced apoptosis of HepG2 cells.
Qiong XIA ; Chuan-gang LI ; Ai-min SUN ; Xue-lin ZHANG
Journal of Southern Medical University 2010;30(6):1376-1378
OBJECTIVETo investigate the expressions of protein kinase C (PKC) isoforms in X-ray-exposed HepG2 cells and identify the PKC isoforms that induce radioresistance in HepG2 cells.
METHODSCultured HepG2 cells were divided into control group and 6 Gy radiation group for corresponding treatments. The fluorescence intensity (FI) and the percentage of positive cells were determined using flow cytometry.
RESULTSThe FI of PKCalpha and PKCdelta were 2.28 and 5.05 in the radiation group, respectively, significantly higher than those in the control group (P<0.05). The percentages of PKCalpha- and PKCdelta -positive cells were significantly higher in the radiation group than in the control group (P<0.05). The FI and the percentages of PKC zeta, gamma, epsilon, zeta positive cells were rather low and showed no significant differences between the two groups (P>0.05); PKCbeta expression was not detected in the two groups of cells. The apoptosis rates of the control and radiation groups were 1.73% and 20.90%, respectively.
CONCLUSIONPKCalpha and PKCdelta may be involved in protecting HepG2 cells from radiation-induced apoptosis.
Apoptosis ; physiology ; radiation effects ; Hep G2 Cells ; Humans ; Isoenzymes ; classification ; metabolism ; Protein Kinase C-alpha ; metabolism ; Protein Kinase C-delta ; metabolism ; Radiation Tolerance ; Signal Transduction ; drug effects ; physiology
5.Methyl-beta-cyclodextrin inhibits cell growth and cell cycle arrest via a prostaglandin E(2) independent pathway.
Young Ae CHOI ; Byung Rho CHIN ; Dong Hoon RHEE ; Han Gon CHOI ; Hyeun Wook CHANG ; Jung Hye KIM ; Suk Hwan BAEK
Experimental & Molecular Medicine 2004;36(1):78-84
Methyl-beta-cyclodextrin, a cyclic oligosaccharide known for its interaction with the plasma membrane induces several events in cells including cell growth and anti-tumor activity. In this study, we have investigated the possible role of cyclooxygenase 2 (COX-2) in cell growth arrest induced by methyl-beta-cyclodextrin in Raw264.7 macrophage cells. Methyl-beta-cyclodextrin inhibited cell growth and arrested the cell cycle, and this cell cycle arrest reduced the population of cells in the S phase, and concomitantly reduced cyclin A and D expressions. Methyl-beta-cyclodextrin in a dose- and time-dependent manner, also induced COX-2 expression, prostaglandin E(2) (PGE(2)) synthesis, and COX-2 promoter activity. Pretreatment of cells with NS398, a COX-2 specific inhibitor completely blocked PGE(2) synthesis induced by methyl-beta-cyclodextrin, however inhibition on cell proliferation and cell cycle arrest was not effected, suggesting non-association of COX-2 in the cell cycle arrest. These results suggest that methyl-beta-cyclodextrin induced cell growth inhibition and cell cycle arrest in Raw264.7 cells may be mediated by cyclin A and D1 expression.
Animals
;
Cell Cycle/drug effects/*physiology
;
Cell Line
;
Cell Proliferation/*drug effects
;
Dinoprostone/*metabolism
;
Dose-Response Relationship, Drug
;
Isoenzymes/genetics/*metabolism
;
Macrophages/cytology/*drug effects/physiology
;
Mice
;
Prostaglandin-Endoperoxide Synthase/genetics/*metabolism
;
Research Support, Non-U.S. Gov't
;
beta-Cyclodextrins/*pharmacology
6.Comparative study on effect of osthole and genistein on peak bone mass in rats.
Kui CHENG ; Bao-Feng GE ; Ping ZHEN ; Ke-Ming CHEN ; Xiao-Ni MA ; Jian ZHOU ; Peng SONG ; Hui-Ping MA
China Journal of Orthopaedics and Traumatology 2014;27(7):587-591
OBJECTIVETo compare the ability of osthole (OST) and genistein (GEN) in enhancing bone peak bone mass of rats to prevent osteoporosis.
METHODSThirty-six female one-month-old SD rats of (125 +/- 3) g body weight were randomly divided into three groups, 12 rats in each group, one group was orally administered osthole at 9 mg x kg(-1) d(-1), one group was given genistein at 10 mg x kg(-1) d(-1) and another was given equal quantity of distilled water as the control. The body weight was monitored weekly and the bone mineral density (BMD) of total body was measured every month. All rats were sacrificed after three months, the femoral bone mineral density, the serum levels of osteocalcin (OC) and anti-tartaric acid phosphatase 5b (TRACP 5b) were measured by Elisa. The bone microarchitectures were analyzed with micro-CT and the bone biomechanics properties were tested with universal material machine.
RESULTSNo significant differences were observed between O-treated or GEN group and the control for the food-intake and body weight during three months. However, the rats treated with OST had significant higher BMD for both total body and femur than the control and GEN group. The O-treated rats also had higher level of serum OC and lower level of TRACP 5b. Besides, they owned bigger bone volume/tissue volume, trabecular thickness, trabecular number but smaller trabecular spacing. In the three point bending tests of femurs,they were found to have larger maximum load, the young's modulus and structural model index (SMI).
CONCLUSIONOrally administered osthole could efficiently increase the peak bone mass of rats,which provide new ideas for preventing osteoporosis.
Acid Phosphatase ; blood ; Animals ; Body Weight ; drug effects ; Bone Density ; drug effects ; Coumarins ; pharmacology ; Female ; Femur ; diagnostic imaging ; drug effects ; pathology ; Genistein ; pharmacology ; Isoenzymes ; blood ; Osteocalcin ; blood ; Radiography ; Rats ; Rats, Sprague-Dawley ; Tartrate-Resistant Acid Phosphatase
7.Effect of naringin on osteoclast differentiation.
Feng-bo LI ; Xiao-lei SUN ; Jian-xiong MA ; Yang ZHANG ; Bin ZHAO ; Yan-jun LI ; Xin-long MA
China Journal of Chinese Materia Medica 2015;40(2):308-312
OBJECTIVETo discuss the effect of Drynariae Rhizoma's naringin on osteoclasts induced by mouse monocyte RAW264.7.
METHODRAW264.7 cells were induced by 100 μg x L(-1) nuclear factor-κB receptor activator ligand (RANKL) and became mature osteoclasts, which were identified through TRAP specific staining and bone resorption. MTT method was sued to screen and inhibit and the highest concentration of osteoclasts. After being cultured with the screened medium containing naringin for 5 days, positive TRAP cell counting and bone absorption area analysis were adopted to observe the effect of naringin on the formation of osteoclast sells and the bone absorption function. The osteoclast proliferation was measured by flow cytometry. The effects of RANK, TRAP, MMP-9, NFATc1 and C-fos mRNA expressions on nuclear factor-κB were detected by RT-PCR.
RESULTNaringin could inhibit osteoclast differentiation, bone absorption function and proliferation activity of osteoclasts, significantly down-regulate RANK, TRAP, MMP-9 and NFATc1 mRNA expressions in the osteoclast differentiation process, and up-regulate the C-fos mRNA expression.
CONCLUSIONNaringin could inhibit osteoclast differentiation, proliferation and bone absorption function. Its mechanism may be achieved by inhibiting the specific gene expression during the osteoclast differentiation process.
Acid Phosphatase ; metabolism ; Animals ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Flavanones ; pharmacology ; Isoenzymes ; metabolism ; Matrix Metalloproteinase 9 ; genetics ; Mice ; NFATC Transcription Factors ; genetics ; Osteoclasts ; cytology ; drug effects ; Tartrate-Resistant Acid Phosphatase
8.Expression of protein kinase C isoforms in retinoic acid-induced differentiation of mouse embryonic stem cells into neuron-like cells.
Qian-Ying GAO ; Jun-Shu WU ; Zhi-Chong WANG ; Jian GE ; Dan-Ping HUANG
Chinese Medical Journal 2007;120(18):1639-1642
Animals
;
Blotting, Western
;
Cell Differentiation
;
drug effects
;
Embryonic Stem Cells
;
cytology
;
enzymology
;
Isoenzymes
;
analysis
;
Mice
;
Neurons
;
enzymology
;
Protein Kinase C
;
analysis
;
Tretinoin
;
pharmacology
9.Molluscicidal activity of Nerium indicum Mill, Pterocarya stenoptera DC, and Rumex japonicum houtt on Oncomelania hupensis.
Hong WANG ; Wei-Min CAI ; Wan-Xian WANG ; Jian-Min YANG
Biomedical and Environmental Sciences 2006;19(4):245-248
OBJECTIVETo evaluate the molluscicidal activities of three Chinese plants N. indicum Mill, R stenoptera DC, and R. japonicum Houtt, and to clarify the molluscicidal mechanism.
METHODSN-butanol extracts and water extracts of the three plants were obtained. The reactions of EST isozyme, glycogen and total protein of snails to the plant extracts were studied.
RESULTSEST electrophoresis showed that EST was an important antidotal enzyme system and reacted strongly to environment. EST changed greatly during the whole exposure period so that it could be viewed as a pathological index of toxicity. Extracts decreased the glycogen content of the snails' soft tissues greatly, and also the protein content.
CONCLUSIONAll extracts show strong molluscicidal activity. The LD50 value of the water extract of N. indicum Mill is as low as 13.2 mg/L. EST can be viewed as a pathological index of toxicity. The energy metabolism abnormity is the key reason for the molluscicidal activities. The biochemical mechanism needs further research.
Animals ; Electrophoresis, Polyacrylamide Gel ; Esterases ; metabolism ; Glycogen ; metabolism ; Isoenzymes ; metabolism ; Juglandaceae ; chemistry ; toxicity ; Molluscacides ; toxicity ; Nerium ; chemistry ; toxicity ; Plant Extracts ; chemistry ; toxicity ; Rumex ; chemistry ; toxicity ; Snails ; drug effects
10.Expression of acetohydroxyacid synthase isozyme genes ilvBN, ilvGM, ilvIH and their resistance to AHAS-inhibitor herbicides.
Jingjing SHEN ; Yongfeng LI ; Xing HUANG ; Xinyan YU ; Jian HE ; Shunpeng LI
Chinese Journal of Biotechnology 2009;25(7):1007-1013
Acetohydroxyacid synthase (AHAS) catalyses the first reaction in the pathway for synthesis of the branched-chain amino acids. AHAS is the target for sulfonylurea, imidazolinone and other AHAS-inhibitor herbicides. Herbicides-resistant AHAS genes have potential application in plant transgenetic engineering and development of new generation herbicide. The AHAS isozyme genes ilvBN, ilvGM and ilvIH were cloned from metsulfuron-methyl resistant strain Klebsiella sp. HR11 and metsulfuron-methyl sensitive strain Klebsiella pneumoniae MGH 78578. Homologous sequences comparison indicated that the differences in AHAS isozyme genes at amino acid levels between strain HR11 and strain MGH 78578 were mainly on the large subunits of ilvBN and ilvGM. The three AHAS isozyme genes from HR11 and MGH 78578 were ligated into the expression vector pET29a(+) and expressed in Escherichia coli BL21, respectively. The results of enzyme inhibition assay showed that only ilvBN and ilvGM from strain HR11 showed strong resistance to AHAS-inhibitor herbicides, while ilvIH from strain HR11 and ilvBN, ilvGM and ilvIH from strain MGH78578 were sensitive to AHAS-inhibitor herbicides.
Acetolactate Synthase
;
chemistry
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression
;
Genes, Bacterial
;
drug effects
;
Herbicide Resistance
;
genetics
;
Herbicides
;
pharmacology
;
Imidazolines
;
pharmacology
;
Isoenzymes
;
genetics
;
Klebsiella
;
genetics
;
Sulfonylurea Compounds
;
pharmacology