1.AcuD Gene Knockout Attenuates the Virulence of Talaromyces marneffei in a Zebrafish Model
Jiao FENG ; Zhiwen CHEN ; Liya HE ; Xing XIAO ; Chunmei CHEN ; Jieming CHU ; Eleftherios MYLONAKIS ; Liyan XI
Mycobiology 2019;47(2):207-216
Talaromyces marneffei is the only dimorphic species in its genus and causes a fatal systemic mycosis named talaromycosis. Our previous study indicated that knockdown of AcuD gene (encodes isocitrate lyase of glyoxylate bypass) of T. marneffei by RNA interference approach attenuated the virulence of T. marneffei, while the virulence of the AcuD knockout strains was not studied. In this study, T. marneffei-zebrafish infection model was successfully established through hindbrain microinjection with different amounts of T. marneffei yeast cells. After co-incubated at 28°C, the increasing T. marneffei inoculum doses result in greater larval mortality; and hyphae generation might be one virulence factor involved in T. marneffei-zebrafish infection. Moreover, the results demonstrated that the virulence of the ΔAcuD was significantly attenuated in this Zebrafish infection model.
Gene Knockout Techniques
;
Hyphae
;
Isocitrate Lyase
;
Microinjections
;
Mortality
;
Rhombencephalon
;
RNA Interference
;
Talaromyces
;
Virulence
;
Yeasts
;
Zebrafish
2.Glyoxylate cycle is required for the overproduction of glutamate but is not essential for Corynebacterium glutamicum growth on glucose.
Bing-Qi YU ; Wei SHEN ; Zheng-Xiang WANG ; Jian ZHUGE
Chinese Journal of Biotechnology 2005;21(2):270-274
The glyoxylate cycle was hypothesed to be indispensable for glutamate overproduction in coryneform bacteria, for it was thought to fulfill anaplerotic functions and to supply energy during the growth phase. During glutamate overproduction phase, however, it has been noted that the high level of the cycle is detrimental to the glutamate production. In order to clarify the relationship between the glutamate production and the glyoxylate cycle, a chromosomal aceA-disrupted mutant of wild-type C. glutamicum ATCC 13032 was constructed. The isocitrate lyase (ICL) activity of the parental strain was 0.011 u/mg of protein and reached 1.980 u/mg of protein after acetate induction; the mutant strain WTdeltaA, however, had no detectable ICL activity and was no longer able to grow on minimal medium with acetate as the sole carbon source. Compared with the wild-type C. glutamicum WT, the mutant strain WTdeltaA, exhibited the same growth rate with glucose as the sole carbon source, indicating glyoxylate cycle is not required for its growth on glucose. On the contrary, the glutamate production in WTdeltaA was severely impaired and more residual glucose was found in the fermentation broth at the end of fermentation with the mutant strain than with the wild-type strain. Further investigations into the relationship between the glutamate production and the glyoxylate cycle are under the way, which may help to elucidate the mechanism of glutamate overproduction.
Corynebacterium glutamicum
;
genetics
;
growth & development
;
metabolism
;
Culture Media
;
Fermentation
;
Glucose
;
metabolism
;
Glutamic Acid
;
biosynthesis
;
Glyoxylates
;
metabolism
;
Isocitrate Lyase
;
metabolism
3.Clone and expression of isocitrate lyase gene in Mycobacterium tuberculosis H37Rv.
Da-wei LI ; Chun-ling XIAO ; Yan GUAN
Acta Academiae Medicinae Sinicae 2004;26(4):368-371
OBJECTIVETo construct recombinant plasmid with isocitrate lyase (ICL) gene of Mycobacterium tuberculosis H37Rv for stable and high level expression of ICL in prokaryotic expression system.
METHODSThe recombinant plasmid with ICL gene (pET30 (a)-Rv0467) was constructed by polymerase chain reaction and cloning. The fusion protein was expressed in E. coli host strain BL21 (DE3). Activity of the fusion protein was studied after it was purified with metal chelating chromatography.
RESULTSWe constructed the plasmid which could highly express Mycobacterium tuberculosis H37Rv ICL. The plasmid was highly expressed in E. coli BL21 (DE3), in which the fusion protein accounted for 30% of total protein content. After having been purified by metal chelating chromatography, the purity of the soluble fusion protein was 90%. The fusion protein had activity of ICL.
CONCLUSIONUsing the prokaryotic expression system, the ICL gene of Mycobacterium tuberculosis H37Rv was successfully cloned and expressed, which build the basis for screening new anti-tuberculosis drugs with ICL as the target point.
Cloning, Molecular ; Escherichia coli ; genetics ; Gene Transfer Techniques ; Isocitrate Lyase ; biosynthesis ; genetics ; Mycobacterium tuberculosis ; classification ; enzymology ; genetics ; immunology ; Plasmids ; biosynthesis ; genetics ; Recombinant Fusion Proteins ; biosynthesis ; genetics
4.Effect of overexpressing isocitrate lyase on succinate production in ldh(-1) Corynebacterium glutamicum.
Chao YANG ; Ning HAO ; Ming YAN ; Lu GAO ; Lin XU
Chinese Journal of Biotechnology 2013;29(11):1696-1700
Corynebacterium glutamicum SA001 is a mutant with lactate dehydrogenase (ldhA) deletion. In order to increase metabolic flux from isocitrate to succinate, and to improve the production of succinate under anaerobic conditions,we transducted the gene aceA coding isocitrate lyase (ICL) from Escherichia coli K12 into Corynebacterium glutamicum SA001 (SA001/pXMJ19-aceA). After 12 h aerobic induction by adding 0.8 mmol/L of IPTG, the recombinant strain was transferred to anaerobic fermentation for 16 h. Succinate reached 14.84 g/L, with a productivity of 0.83 g/(L x h). Compared to C. glutamicum SA001, the activity of ICL of the recombinant strain was increased 5.8-fold, and the succinate productivity was increased 48%. Overexpression of isocitrate lyase will increase the metabolic flux of glyoxylate bypass flowing to succinate.
Corynebacterium glutamicum
;
genetics
;
metabolism
;
Escherichia coli
;
enzymology
;
genetics
;
Gene Deletion
;
Industrial Microbiology
;
Isocitrate Lyase
;
biosynthesis
;
genetics
;
L-Lactate Dehydrogenase
;
genetics
;
Succinic Acid
;
metabolism
;
Transduction, Genetic
5.Metabolic regulation of isocitrate lyase regulator in Escherichia coli based on metabolic flux information.
Zhijie LIU ; Li ZHOU ; Qiang HUA
Chinese Journal of Biotechnology 2012;28(5):565-576
Gene expression is regulated by different transcriptional regulators. The transcriptional regulator isocitrate lyase regulator (IclR) of Escherichia coli represses the expression of the aceBAK operon that codes for the glyoxylate pathway enzymes. In this study, physiological and metabolic responses of the deletion of the ic1R gene in E. coli BW25113 were investigated based on the quantification and analysis of intracellular metabolic fluxes. The knockout of the iclR gene resulted in a decrease in the growth rate, glucose uptake rate and the acetate secretion rate, but a slight increase in biomass yield. The latter could be attributed to the lowered metabolic fluxes through several CO2 generating pathways, including the redirection of 33% of isocitrate directly to succinate and malate without CO2 production as well as the reduced flux through the pentose phosphate pathway. Furthermore, although the glyoxylate shunt was activated in the iclR mutant, the flux through phosphoenolpyruvate (PEP) carboxykinase kept almost unchanged, implying an inactive PEP-glyoxylate cycle and no extra loss of carbon atoms in the mutant strain. Both the reduced glucose uptake rate and the active glyoxylate shunt were responsible for the minor decrease in acetate secretion in the ic1R knockout strain compared to that in the wild-type E. coli strain.
Carbon Isotopes
;
metabolism
;
Escherichia coli
;
enzymology
;
genetics
;
Escherichia coli Proteins
;
genetics
;
metabolism
;
Gene Knockout Techniques
;
Isocitrate Lyase
;
genetics
;
metabolism
;
Metabolic Networks and Pathways
;
genetics
;
Repressor Proteins
;
genetics
;
metabolism
6.Differential expression of isocitrate lyase in P. marneffei phagocytized by nonstimulated and stimulated murine macrophages.
Jun LI ; Li-yan XI ; Hong-fang LIU ; Jun-min ZHANG ; Xi-qing LI ; Xiao-rong XU
Journal of Southern Medical University 2007;27(5):631-633
OBJECTIVETo investigate the differential expression of isocitrate lyase in Penicillium marneffei phagocytized by nonstimulated and stimulated murine macrophages, and explore the role of glyoxylate pathway in pathogenesis of Penicilliosis marneffei.
METHODSPenicillium marneffei conidia and Raw264.7 cells were incubated in 16 cultures, which were divided to 4 groups for treatment with N-monomethyl-L-arginine (LNMMA, CI group), murine interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS) (T group), IFN-gamma plus LPS and LNMMA (TI group), or the same volume of culture medium (C group). The transcriptional levels of isocitrate lyase were detected using real-time RT-PCR, and its expression levels detected biochemically.
RESULTSThe transcriptional levels of isocitrate lyase in C, CI, T, TI groups were 1.00, 1.42, 33.09, and 74.88 (P<0.05), while the expression levels were 0.06, 0.07, 0.18, and 0.93, respectively (P<0.05). The content of nitric oxide in T group was significantly higher than that in the other groups (P<0.01), but the CFU of T group was the lowest (P<0.01).
CONCLUSIONReactive nitrogen intermediates induced by stimulated murine macrophages restrain the expression of isocitrate lyase of Penicillium marneffei and development of Penicillium marneffei, in which process the glyoxylate pathway may play an important role.
Animals ; Cell Line ; Fungal Proteins ; genetics ; Gene Expression Profiling ; Gene Expression Regulation, Enzymologic ; drug effects ; Gene Expression Regulation, Fungal ; drug effects ; Host-Pathogen Interactions ; Interferon-gamma ; pharmacology ; Isocitrate Lyase ; genetics ; Lipopolysaccharides ; pharmacology ; Macrophages ; drug effects ; immunology ; microbiology ; Mice ; Nitric Oxide ; immunology ; Penicillium ; genetics ; immunology ; physiology ; Phagocytosis ; immunology ; Reverse Transcriptase Polymerase Chain Reaction ; omega-N-Methylarginine ; pharmacology
7.Isocitrate lyase from Mycobacterium tuberculosis promotes survival of Mycobacterium smegmatis within macrophage by suppressing cell apoptosis.
Jun-ming LI ; Na LI ; Dao-yin ZHU ; La-gen WAN ; Yong-lin HE ; Chun YANG
Chinese Medical Journal 2008;121(12):1114-1119
BACKGROUNDIsocitrate lyase (ICL) was previously demonstrated to play a pivotal role in the intracellular metabolism of Mycobacterium tuberculosis (MTB). Presently several lines of evidence suggest that ICL from MTB (MTB-ICL) may play some roles in the interaction between MTB and host macrophage. However, there has been no research on the interaction between MTB-ICL and host macrophage.
METHODSMTB-icl and M. smegmatis (MS)-icl genes were amplified by polymerase chain reaction (PCR) and cloned into the E. coli-mycobacterium shuttle plasmid pUV15 to obtain recombinant shuttle plasmids pMTB-icl and pMS-icl. Following transformation into MS by electroporation, the expression of pMTB-icl and pMS-icl was verified by reverse transcriptase (RT)-PCR. The expression of recombinant plasmids derived from pUV15 when rMS was phagocytized by macrophage was also verified via fluorescence microscope. Ms 1 - 2c, rMS-pUV15, rMS-pMS-icl and rMS-pMTB-icl were used to infect RAW264.7 cells and the survival of intracellular MS was monitored by bacterial culture at 0, 24 and 48 hours after infection. The culture supernatants from macrophage infected by Ms 1 - 2c, rMS-pUV15, rMS-pMS-icl and rMS-pMTB-icl were collected and the interferon (IFN)-gamma and nitric oxide (NO) concentrations were measured by ELISA or by Griess assay, respectively. The apoptosis of macrophage was assayed by the in situ TUNEL technique.
RESULTSRT-PCR showed that both pMTB-icl and pMS-icl could be expressed in MS. Fluorescence microscopic observation showed that recombinant plasmids derived from pUV15 (pUV15-IG) could also be expressed in MS when MS were phagocytized by macrophage. Bacterial culture data demonstrated that rMS-pMTB-icl exhibited significantly increased intracellular survival in the murine macrophage cell line RAW264.7 compared with Ms 1 - 2c, rMS-pUV15 and rMS-pMS-icl. This increased intracellular survival was not accompanied by the upregulation of IFN-gamma and NO in host macrophage. But a lower apoptosis rate of macrophages infected with rMS-pMTB-icl was observed when compared with macrophages infected with other strains of MS.
CONCLUSIONSMTB-ICL could promote the intracellular survival of MS. Suppressing the apoptosis of host macrophage may be one of the important mechanisms involved in this increased intracellular survival.
Animals ; Apoptosis ; genetics ; physiology ; Cell Line ; In Situ Nick-End Labeling ; Interferon-gamma ; metabolism ; Isocitrate Lyase ; genetics ; metabolism ; Macrophages ; cytology ; metabolism ; microbiology ; Microbial Viability ; Microscopy, Fluorescence ; Mycobacterium smegmatis ; enzymology ; genetics ; growth & development ; Mycobacterium tuberculosis ; enzymology ; genetics ; Nitric Oxide ; metabolism ; Plasmids ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Transformation, Genetic