1.Circadian rhythms of melatonin, cortisol, and clock gene expression in the hyperacute phase of wake-up stroke: study design and measurement.
Xian-Xian ZHANG ; Xiu-Ying CAI ; Hong-Ru ZHAO ; Hui WANG ; Da-Peng WANG ; Quan-Quan ZHANG ; Han WANG ; Qi FANG
Chinese Medical Journal 2020;133(21):2635-2637
2.Advances in epigenetics in ischemic stroke.
Dan-Hong LIU ; Xia-Jun XIONG ; Jun LIAO ; Zhi-Gang MEI ; Jin-Wen GE ; Meng-Zhen WEI
China Journal of Chinese Materia Medica 2022;47(17):4551-4559
Ischemic stroke is one of the main causes of death and long-term disability worldwide, which seriously affects the quality of life of patients and brings a heavy economic burden to families and society. Epidemiological studies have shown that stroke has become the second leading cause of death and major disabling disease in the world, with the characteristics of high morbidity, high recurrence, and high mortality. Epigenetic mechanism is the molecular process where gene expression and function in each cell are dynamically regulated and interconnected and a biological mechanism that changes genetic performance without changing the DNA sequence, including DNA methylation, histone modifications, and non-coding RNA. However, the research on epigenetics is currently focused on other diseases such as tumors. Recent studies have found that epigenetics has received extensive attention in the past few decades as a key factor involved in the pathophysiological process of ischemic stroke. The present study introduced the mediation of epigenetics in the induction of stroke, summarized the potential drug targets for these mechanisms in the treatment of stroke, and further explored the significance of traditional Chinese medicine(TCM) against cerebral ischemia injury based on TCM classification of stroke.
DNA Methylation
;
Epigenesis, Genetic
;
Humans
;
Ischemic Stroke/genetics*
;
Quality of Life
;
RNA, Untranslated/metabolism*
;
Stroke/genetics*
3.Interaction between ischemic stroke risk loci identified by genome-wide association studies and sleep habits.
Ruo Tong YANG ; Meng Ying WANG ; Chun Nan LI ; Huan YU ; Xiao Wen WANG ; Jun Hui WU ; Si Yue WANG ; Jia Ting WANG ; Da Fang CHEN ; Tao WU ; Yong Hua HU
Journal of Peking University(Health Sciences) 2022;54(3):412-420
OBJECTIVE:
To explore the relationship between sleep habits (sleep duration, sleep efficiency, sleep onset timing) and ischemic stroke, and whether there is an interaction between sleep habits and ischemic stroke susceptibility gene loci.
METHODS:
A questionnaire survey, physical examination, blood biochemical testing and genotyping were conducted among rural residents in Beijing, and the gene loci of ischemic stroke suggested by previous genome-wide association studies (GWAS) were screened. Multivariable generalized linear model was used to analyze the correlation between sleep habits, sleep-gene interaction and ischemic stroke.
RESULTS:
A total of 4 648 subjects with an average age of (58.5±8.7) years were enrolled, including 1 316 patients with ischemic stroke. Compared with non-stroke patients, stroke patients with sleep duration ≥9 hours, sleep efficiency < 80%, and sleep onset timing earlier than 22:00 accounted for a higher proportion (P < 0.05). There was no significant association between sleep duration and risk of ischemic stroke (OR=1.04, 95%CI: 0.99-1.10, P=0.085). Sleep efficiency was inversely associated with the risk of ischemic stroke (OR=0.18, 95%CI: 0.06-0.53, P=0.002). The risk of ischemic stroke in the subjects with sleep efficiency < 80% was 1.47-fold (95%CI: 1.03-2.10, P=0.033) of that in the subjects with sleep efficiency ≥80%. Falling asleep earlier than 22:00 was associated with 1.26 times greater risk of stroke than falling asleep between 22:00 and 22:59 (95%CI: 1.04-1.52, P=0.017). Multifactorial adjustment model showed that rs579459 on ABO gene had an interaction with sleep time (P for interaction =0.040). When there were two T alleles for rs579459 on the ABO gene, those who fell asleep before 22:00 had 1.56 times (95%CI: 1.20-2.04, P=0.001) the risk of stroke compared with those who fell asleep between 22:00 and 22:59, and there was no significant difference when the number of pathogenic alleles was 0 or 1. In the model adjusted only for gender, age and family structure, sleep duration and the number of T allele rs2634074 on PITX2 gene had an interaction with ischemic stroke (P for interaction=0.033).
CONCLUSION
Decreased sleep efficiency is associated with increased risk of ischemic stroke, and falling asleep earlier than 22:00 is associated with higher risk of ischemic stroke. Sleep onset timing interacted with rs579459 in ABO gene and the risk of ischemic stroke. Sleep duration and PITX2 rs2634074 may have a potential interaction with ischemic stroke risk.
Aged
;
Genome-Wide Association Study
;
Humans
;
Ischemic Stroke
;
Middle Aged
;
Sleep/genetics*
;
Stroke/genetics*
;
Surveys and Questionnaires
4.Correlation of gut microbiota and ischemic stroke: a review.
Yu-Hao DAI ; Li-Ming LIU ; Chen LIU ; Wen-Jie WU ; Jian-Ying SHEN ; Shao-Jing LI
China Journal of Chinese Materia Medica 2021;46(22):5773-5780
With the widespread application of next-generation sequencing(NGS), especially 16 S rRNA and shotgun sequencing, researchers are no longer troubled with massive data on the gut microbiota, and the correlation between the gut microbiota and the brain(central nervous system) has been gradually revealed. Research on the microbiota-gut-brain axis(MGBA) based on the gut microbiota have provided insights into the exploration of the pathogenesis and risk factors of ischemic stroke(IS), a cerebrovascular disease with high disability and mortality rates, and also facilitate the selection of therapeutic targets of this class of drugs. This study reviewed the application of NGS in the study of gut microbiota and the research progress of MGBA in recent years and systematically collated the research papers on the correlation between IS and gut microbiota. Furthermore, from the bi-directional regulation of MGBA, this study also discussed the high-risk factors of IS under the dysregulation of gut microbiota and the pathophysiological changes of gut microbiota after the occurrence of IS and summarized the related targets to provide a reliable reference for the therapeutic research of IS from the gut microbiota.
Brain
;
Brain-Gut Axis
;
Gastrointestinal Microbiome
;
Humans
;
Ischemic Stroke
;
Stroke/genetics*
5.Screening of key genes and pathways of ischemic stroke and prediction of traditional Chinese medicines based on bioinformatics.
Yun CAO ; Ling-Bo KONG ; Xing HUANG ; Xiao-Lin LI ; Jing-Ling CHANG ; Ying GAO
China Journal of Chinese Materia Medica 2021;46(7):1803-1812
The aim of this paper was to explore the key genes and pathogenesis of ischemic stroke(IS) by bioinformatics, and predict the potential traditional Chinese medicines for IS. Based on the gene-chip raw data set of GSE22255 from National Center of Biotechnology Information(NCBI), the article enrolled in 20 patients with ischemic stroke and 20 sex-and age-matched controls, and differentially expressed genes(DEGs) were screened based on R language software. The DAVID tool and R language software were used to perform gene ontology(GO) biological process enrichment analysis and Kyoto encyclopedia of genes and gnomes(KEGG) pathway enrichment analysis. The DEGs were imported into STRING to construct a protein-protein interaction network, and the Molecular Complexity Module(MCODE) plug-in of Cytoscape software was used to visualize and analyze the key functional modules. Moreover, the core genes and the medical ontology information retrieval platform(Coremine Medical) were mapped to each other to screen the traditional Chinese medicines and construct drug-active ingredient-target network. Compared with healthy controls, 14 DEGs were obtained, of which 12 genes were up-regulated and 2 genes were down-regulated. DEGs were mainly involved in immune response, inflammatory process, signal transduction, and cell proliferation regulation. The interleukin-17(IL-17), nuclear factor kappaB(NF-κB), tumor necrosis factor(TNF), nucleotide binding oligomerization domain(NOD)-like receptor and other signaling pathways were involved in KEGG pathway enrichment analysis. The key modules of the DEGs-encoding protein interaction network mainly focused on 7 genes of TNF, JUN, recombinant immediate early response 3(IER3), recombinant early growth response protein 1(EGR1), prostaglandin-endoperoxide synthase 2(PTGS2), C-X-C motif chemokine ligand 8(CXCL8) and C-X-C motif chemokine ligand 2(CXCL2), which were involved in biological processes widely such as neuroinflammation and immunity. TNF and JUN were the key nodes in this module, which might become potential biological markers for diagnosis and prognosis evaluation of IS. The potential traditional Chinese medicines for the treatment of IS includes Salviae Miltiorrhizae Radix et Rhizoma, Croci Stigma, Scutellariae Radix, and Cannabis Fructus. The occurrence of stroke was the result of multiple factors. Dysregulation of genes and pathways related to immune regulation and inflammation may be the key link for the development of IS. This study provided research direction and theoretical basis for further exploring the mechanism of action of traditional Chinese medicine in the treatment of IS and searching for potential drug targets.
Brain Ischemia
;
China
;
Computational Biology
;
Gene Expression Profiling
;
Humans
;
Ischemic Stroke
;
Medicine, Chinese Traditional
;
Stroke/genetics*
6.Analysis of the association of CYP450 gene polymorphisms with ischemic stroke.
Lin QI ; Yongfang LIU ; Meng QI ; Yingjuan PENG ; Guangming SUN ; Ying YUE
Chinese Journal of Medical Genetics 2023;40(4):500-504
OBJECTIVE:
To assess the association of cytochrome P450 (CYP450) gene polymorphisms with the occurrence of ischemic stroke (IS).
METHODS:
From January 2020 to August 2022, 390 IS patients treated at the Zhengzhou Seventh People's Hospital were enrolled as the study group, and 410 healthy individuals undergoing physical examination during the same period were enrolled as the control group. Clinical data of all subjects were collected, which included age, sex, body mass index (BMI), smoking history and results of laboratory tests. Chi-square test and independent sample t test were used for comparing the clinical data. Multivariate logistic regression analysis was used to analyze the non-hereditary independent risk factors for IS. Fasting blood samples of the subjects were collected, and the genotypes of rs4244285, rs4986893, rs12248560 of the CYP2C19 gene and rs776746 of the CYP3A5 gene were determined by Sanger sequencing. The frequency of each genotype was calculated by using SNPStats online software. The association between the genotype and IS under the dominant, recessive and additive models was analyzed.
RESULTS:
The levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C), apolipoprotein B (Apo-B) and homocysteine (Hcy) of the case group were significantly higher than those of the control group, whilst the levels of high density lipoprotein (HDL-C) and Apo-A1 (APO-A1) were significantly lower (P < 0.05). Multivariate Logistic regression analysis showed that TC (95%CI = 1.13-1.92, P = 0.02), LD-C (95%CI = 1.03-2.25, P = 0.03), Apo-A1 (95%CI = 1.05-2.08, P = 0.04), Apo-B (95%CI = 1.7-4.22, P < 0.01) and Hcy (95%CI = 1.12-1.83, P = 0.04) were non-genetic independent risk factors for the occurrence of IS. Analysis of the association between the genetic polymorphisms and the risk of IS showed that the AA genotype at rs4244285 of the CYP2C19 gene, the AG genotype and A allele at rs4986893 of the CYP2C19 gene, and the GG genotype and G allele at rs776746 of the CYP3A5 gene were significantly associated with IS. Under the recessive/additive model, dominant model and dominant/additive model, polymorphisms of the rs4244285, rs4986893 and rs776746 loci were also significantly associated with the IS.
CONCLUSION
TC, LDL-C, Apo-A1, Apo-B and Hcy can all affect the occurrence of IS, and CYP2C19 and CYP3A5 gene polymorphisms are closely associated with the IS. Above finding has confirmed that the CYP450 gene polymorphisms can increase the risk of IS, which may provide a reference for the clinical diagnosis.
Humans
;
Cytochrome P-450 CYP3A/genetics*
;
Cytochrome P-450 CYP2C19/genetics*
;
Ischemic Stroke
;
Cholesterol, LDL/genetics*
;
Polymorphism, Single Nucleotide
;
Genotype
;
Apolipoproteins B/genetics*
;
Gene Frequency
7.Danshen-Chuanxiongqin Injection attenuates cerebral ischemic stroke by inhibiting neuroinflammation via the TLR2/ TLR4-MyD88-NF-κB Pathway in tMCAO mice.
Xiao-Jing XU ; Jin-Bo LONG ; Kai-Yu JIN ; Li-Bing CHEN ; Xiao-Yan LU ; Xiao-Hui FAN
Chinese Journal of Natural Medicines (English Ed.) 2021;19(10):772-783
Danshen-Chuanxiongqin Injection (DCI) is a commonly used traditional Chinese medicine for the treatment of cerebral ischemic stroke in China. However, its underlying mechanisms remain completely understood. The current study was designed to explore the protective mechanisms of DCI against cerebral ischemic stroke through integrating whole-transcriptome sequencing coupled with network pharmacology analysis. First, using a mouse model of cerebral ischemic stroke by transient middle cerebral artery occlusion (tMCAO), we found that DCI (4.10 mL·kg
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal
;
Humans
;
Infarction, Middle Cerebral Artery/genetics*
;
Ischemic Stroke
;
Myeloid Differentiation Factor 88/genetics*
;
NF-kappa B/metabolism*
;
Stroke/genetics*
;
Toll-Like Receptor 2
;
Toll-Like Receptor 4/metabolism*
8.Effects of electro-scalp acupuncture on inflammatory response and microglial polarization in the ischemic cortex of rats with ischemic stroke.
Xiao-Yun PENG ; Bo YUAN ; Tian TIAN ; Wen-Jun LUO ; Ling-Gui ZHU ; Yan-Ju ZHANG ; Ying LI ; Xiao-Zheng DU ; Jin-Hai WANG
Chinese Acupuncture & Moxibustion 2023;43(9):1050-1055
OBJECTIVE:
To observe the effects of electro-scalp acupuncture (ESA) on the expression of microglial markers CD206 and CD32, as well as interleukin (IL)-6, IL-1β, and IL-10 in the ischemic cortex of rats with ischemic stroke, and to explore the mechanisms of ESA on alleviating inflammatory damage of ischemic stroke.
METHODS:
Sixty 7-week-old male SD rats were randomly selected, with 15 rats assigned to a sham surgery group. The remaining rats were treated with suture method to establish rat model of middle cerebral artery occlusion (MCAO). The rats with successful model were randomly divided into a model group, a VitD3 group, and an ESA group, with 15 rats in each group. In the ESA group, ESA was performed bilaterally at the "top-temporal anterior oblique line" with disperse-dense wave, a frequency of 2 Hz/100 Hz, and an intensity of 1 mA. Each session lasted for 30 min, once daily, for a total of 7 days. The VitD3 group were treated with intragastric administration of 1,25-dihydroxyvitamin D3 (1,25-VitD3) solution (3 ng/100 g), once daily for 7 days. The neurological deficit scores and neurobehavioral scores were assessed before and after the intervention. After the intervention, the brain infarct volume was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Immunofluorescence double staining was performed to detect the protein expression of CD32 and CD206 in the ischemic cortex. Western blot analysis was conducted to measure the protein expression of IL-6, IL-1β, and IL-10 in the ischemic cortex.
RESULTS:
Compared with the sham surgery group, the model group showed increased neurological deficit scores and neurobehavioral scores (P<0.01), increased brain infarct volume (P<0.01), increased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and decreased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the model group, both the ESA group and the VitD3 group showed decreased neurological deficit scores and neurobehavioral scores (P<0.01), reduced brain infarct volume (P<0.01), decreased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and increased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the VitD3 group, the ESA group had lower neurological deficit score (P<0.05), larger brain infarct volume (P< 0.05), and lower protein expression of CD32, CD206, IL-1β, and IL-10 in the ischemic cortex (P<0.01, P<0.05).
CONCLUSION
ESA could improve neurological function in MCAO rats, and its mechanism may be related to promoting microglial M1-to-M2 polarization and alleviating inflammatory damage.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Ischemic Stroke
;
Interleukin-10
;
Interleukin-6/genetics*
;
Microglia
;
Scalp
;
Acupuncture Therapy
;
Vitamins
;
Infarction, Middle Cerebral Artery
9.Chinese medicine Buyang Huanwu decoction promotes neurogenesis and angiogenesis in ischemic stroke rats by upregulating miR-199a-5p expression.
Lujie ZHUGE ; Yan FANG ; Huaqian JIN ; Lin LI ; Yan YANG ; Xiaowei HU ; Lisheng CHU
Journal of Zhejiang University. Medical sciences 2020;49(6):687-696
OBJECTIVE:
To investigate the mechanism of Chinese medicine Buyang Huanwu decoction (BYHWD) promoting neurogenesis and angiogenesis in ischemic stroke rats.
METHODS:
Male SD rats were randomly divided into sham operation group, model group, BYHWD group, antagonist group and antagonist control group with 14 rats in each. Focal cerebral ischemia was induced by occlusion of the right middle cerebral artery for 90 min with intraluminal filament and reperfusion for 14 d in all groups except sham operation group. BYHWD (13 g/kg) was administrated by gastrogavage in BYHWD group, antagonist group and antagonist control group at 24 h after modeling respectively, and BrdU (50 mg/kg) was injected intraperitoneally in all groups once a day for 14 consecutive days. miR-199a-5p antagomir or NC (10 nmol) was injected into the lateral ventricle at d5 after ischemia in antagonist and antagonist control groups, respectively. The neurological deficits were evaluated by the modified neurological severity score (mNSS) and the corner test, and the infract volume was measured by toluidine blue staining. Neurogenesis and angiogenesis were detected by immunofluorescence double labeling method. The expression level of miR-199a-5p was tested by real-time RT-PCR, and the protein expressions of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) were determined by Western blotting.
RESULTS:
BYHWD treatment significantly promoted the recovery of neurological function (
CONCLUSIONS
Buyang Huanwu decoction promotes neurogenesis and angiogenesis in rats with cerebral ischemia, which may be related to increased protein expression of VEGF and BDNF through upregulating miR-199a-5p.
Animals
;
Brain Ischemia/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Ischemic Stroke/drug therapy*
;
Male
;
MicroRNAs/genetics*
;
Neurogenesis/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Up-Regulation/drug effects*
;
Vascular Endothelial Growth Factor A/genetics*
10.Advances in the study of gene chip technology for the investigation of the mechanisms underlying cerebral ischemia and anti-cerebral ischemia agents.
Acta Pharmaceutica Sinica 2007;42(8):803-809
With the development of molecular biology, genome science becomes an important subject currently. Characterized by high-throughput, high-integration, high-parallelism, miniaturization and automation, it is the integrated study of gene properties on a large scale. Stroke, an important cerebral vascular disease, is one of the threats to human health. The utilization of microarray study for the pathogenesis of stroke, not only reveals the essentials of the disease in the overall level of genes, but also contributes to the detection of therapeutic targets and the development of novel drugs for stroke. Referring to our own work, this discussion focuses on the progress of the mechanisms underlying experimental cerebral ischemia investigation in vivo as well as anti-cerebral ischemia agents by gene chip technology.
Animals
;
Brain
;
blood supply
;
Brain Ischemia
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Gene Expression Profiling
;
Gene Expression Regulation
;
Humans
;
Hypoxia-Inducible Factor 1
;
metabolism
;
Interleukin-6
;
metabolism
;
Ischemic Preconditioning
;
Neovascularization, Physiologic
;
drug effects
;
Neuroprotective Agents
;
pharmacology
;
Oligonucleotide Array Sequence Analysis
;
methods
;
Reperfusion Injury
;
genetics
;
metabolism
;
Stroke
;
genetics
;
metabolism