1.Safety and efficacy of Angong Niuhuang Pills in patients with moderate-to-severe acute ischemic stroke (ANGONG TRIAL): A randomized double-blind placebo-controlled pilot clinical trial.
Shengde LI ; Anxin WANG ; Lin SHI ; Qin LIU ; Xiaoling GUO ; Kun LIU ; Xiaoli WANG ; Jie LI ; Jianming ZHU ; Qiuyi WU ; Qingcheng YANG ; Xianbo ZHUANG ; Hui YOU ; Feng FENG ; Yishan LUO ; Huiling LI ; Jun NI ; Bin PENG
Chinese Medical Journal 2025;138(5):579-588
BACKGROUND:
Preclinical studies have indicated that Angong Niuhuang Pills (ANP) reduce cerebral infarct and edema volumes. This study aimed to investigate whether ANP safely reduces cerebral infarct and edema volumes in patients with moderate to severe acute ischemic stroke.
METHODS:
This randomized, double-blind, placebo-controlled pilot trial included patients with acute ischemic stroke with National Institutes of Health Stroke Scale (NIHSS) scores ranging from 10 to 20 in 17 centers in China between April 2021 and July 2022. Patients were allocated within 36 h after onset via block randomization to receive ANP or placebo (3 g/day for 5 days). The primary outcomes were changes in cerebral infarct and edema volumes after 14 days of treatment. The primary safety outcome was severe adverse events (SAEs) for 90 days.
RESULTS:
There were 57 and 60 patients finally included in the ANP and placebo groups, respectively for modified intention-to-treat analysis. The median age was 66.0 years, and the median NIHSS score at baseline was 12.0. The changes in cerebral infarct volume at day 14 were 0.3 mL and 0.4 mL in the ANP and placebo groups, respectively (median difference: -7.1 mL; interquartile range [IQR]: -18.3 to 2.3 mL, P = 0.30). The changes in cerebral edema volume of the ANP and placebo groups on day 14 were 11.4 mL and 4.0 mL, respectively ( median difference: 3.0 mL, IQR: -1.3 to 9.9 mL, P = 0.15). The rates of SAE within 90 days were similar in the ANP (3/57, 5%) and placebo (7/60, 12%) groups ( P = 0.36). Changes in serum mercury and arsenic concentrations were comparable. In patients with large artery atherosclerosis, ANP reduced the cerebral infarct volume at 14 days (median difference: -12.3 mL; IQR: -27.7 to -0.3 mL, P = 0.03).
CONCLUSIONS:
ANP showed a similar safety profile to placebo and non-significant tendency to reduce cerebral infarct volume in patients with moderate-to-severe stroke. Further studies are warranted to assess the efficacy of ANP in reducing cerebral infarcts and improving clinical prognosis.
TRAIL REGISTRATION
Clinicaltrials.gov , No. NCT04475328.
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Ischemic Stroke/drug therapy*
;
Pilot Projects
;
Stroke/drug therapy*
;
Treatment Outcome
2.Nano drug delivery system based on natural cells and derivatives for ischemic stroke treatment.
Wei LV ; Yijiao LIU ; Shengnan LI ; Kewei REN ; Hufeng FANG ; Hua CHEN ; Hongliang XIN
Chinese Medical Journal 2025;138(16):1945-1960
Ischemic stroke (IS) ranks as a leading cause of death and disability globally. The blood-brain barrier (BBB) poses significant challenges for effective drug delivery to brain tissues. Recent decades have seen the development of targeted nanomedicine and biomimetic technologies, sparking substantial interest in biomimetic drug delivery systems for treating IS. These systems are devised by utilizing or replicating natural cells and their derivatives, offering promising new pathways for detection and transport across the BBB. Their multifunctionality and high biocompatibility make them effective treatment options for IS. In addition, the incorporation of engineering techniques has provided these biomimetic drug delivery systems with active targeting capabilities, enhancing the accumulation of therapeutic agents in ischemic tissues and specific cell types. This improvement boosts drug transport and therapeutic efficacy. However, it is crucial to thoroughly understand the advantages and limitations of various engineering strategies employed in constructing biomimetic delivery systems. Selecting appropriate construction methods based on the characteristics of the disease is vital to achieving optimal treatment outcomes. This review summarizes recent advancements in three types of engineered biomimetic drug delivery systems, developed from natural cells and their derivatives, for treating IS. It also discusses their effectiveness in application and potential challenges in future clinical translation.
Humans
;
Drug Delivery Systems/methods*
;
Ischemic Stroke/drug therapy*
;
Animals
;
Blood-Brain Barrier/metabolism*
;
Stroke/drug therapy*
3.Effects of Zhuang medicine Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke model rats via the P2X7R/NLRP3 pathway.
Liangji GUO ; Ligui GAN ; Zujie QIN ; Hongli TENG ; Chenglong WANG ; Jiangcun WEI ; Xiaoping MEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):985-991
Objective To explore the effects of Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke (IS) rats via the P2X purinoceptor 7 receptor (P2X7R)/NLR family pyrin domain-containing 3 (NLRP3) pathway. Methods The rats were divided into five groups: the IS group, control group, Shuanglu Tongnao Formula group, P2X7R inhibitor brilliant blue G (BBG) group, and Shuanglu Tongnao Formula combined with P2X7R activator adenosine triphosphate (ATP) group, with 18 rats in each group. Except for the control group, rats in all other groups were used to construct an IS model using the suture method. After successful modeling, the drug was given once a day for 2 weeks. Neurological function scores and cerebral infarction volume ratios were measured in rats. Pathological examination of the ischemic penumbra brain tissue was performed. Immunofluorescence staining was used to quantify the proportions of microglia co-expressing both inducible nitric oxide synthase (iNOS) and ionized calcium-binding adapter molecule 1 (Iba1), as well as arginase 1 (Arg1) and Iba1, in the ischemic penumbra brain tissue. ELISA was used to detect tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin 6 (IL-6) and IL-10 in the ischemic penumbra brain tissue. Western blotting was used to measure P2X7R, NLRP3, and IL-1β proteins in the ischemic penumbra brain tissue. Results Compared with the control group, the IS group showed disordered neuronal arrangement, nuclear condensation, and obvious infiltration of inflammatory cells in the ischemic penumbra; significantly elevated neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with reduced proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. Compared with the IS group, the Zhuang medicine Shuanglu Tongnao Formula and BBG groups demonstrated alleviated brain tissue damage; reduced neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with increased proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. ATP reversed the effects of Zhuang medicine Shuanglu Tongnao Formula on microglial polarization and neuroinflammation in IS rats. Conclusion Zhuang medicine Shuanglu Tongnao Formula may promote the transformation of microglia from M1 type to M2 type by inhibiting the P2X7R/NLRP3 pathway, thereby improving neuroinflammation in IS rats.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Receptors, Purinergic P2X7/metabolism*
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Ischemic Stroke/pathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Brain Ischemia/drug therapy*
;
Microglia/metabolism*
4.A New Perspective on the Prediction and Treatment of Stroke: The Role of Uric Acid.
Bingrui ZHU ; Xiaobin HUANG ; Jiahao ZHANG ; Xiaoyu WANG ; Sixuan TIAN ; Tiantong ZHAN ; Yibo LIU ; Haocheng ZHANG ; Sheng CHEN ; Cheng YU
Neuroscience Bulletin 2025;41(3):486-500
Stroke, a major cerebrovascular disease, has high morbidity and mortality. Effective methods to reduce the risk and improve the prognosis are lacking. Currently, uric acid (UA) is associated with the pathological mechanism, prognosis, and therapy of stroke. UA plays pro/anti-oxidative and pro-inflammatory roles in vivo. The specific role of UA in stroke, which may have both neuroprotective and damaging effects, remains unclear. There is a U-shaped association between serum uric acid (SUA) levels and ischemic stroke (IS). UA therapy provides neuroprotection during reperfusion therapy for acute ischemic stroke (AIS). Urate-lowering therapy (ULT) plays a protective role in IS with hyperuricemia or gout. SUA levels are associated with the cerebrovascular injury mechanism, risk, and outcomes of hemorrhagic stroke. In this review, we summarize the current research on the role of UA in stroke, providing potential targets for its prediction and treatment.
Humans
;
Uric Acid/metabolism*
;
Stroke/drug therapy*
;
Animals
;
Hyperuricemia/drug therapy*
;
Ischemic Stroke/blood*
;
Biomarkers/blood*
5.Research progress of small-molecule natural medicines for the treatment of ischemic stroke.
Kui LIU ; Ling WANG ; Tao PANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):21-30
Stroke is the second leading cause of disability and mortality worldwide, imposing a substantial socioeconomic burden on individuals and healthcare systems. Annually, approximately 14 million people experience stroke, with ischemic stroke comprising nearly 85% of cases, of which 10% to 20% involve large vessel occlusions. Currently, recombinant tissue plasminogen activator (tPA) remains the only approved pharmacological intervention. However, its utility is limited due to a narrow therapeutic window and low recanalization rates, making it applicable to only a minority of patients. Therefore, there is an urgent need for novel therapeutic strategies, including pharmacological advancements and combinatory treatments. Small-molecule natural medicines, particularly those derived from traditional Chinese herbs, have demonstrated significant therapeutic potential in ischemic stroke management. These compounds exert multiple neuroprotective effects, such as antioxidation, anti-inflammatory action, and inhibition of apoptosis, all of which are critical in mitigating stroke-induced cerebral damage. This review comprehensively examines the pathophysiology of acute ischemic stroke (AIS) and highlights the recent progress in the development of small-molecule natural medicines as promising therapeutic agents for cerebral ischemic stroke.
Humans
;
Ischemic Stroke/physiopathology*
;
Animals
;
Neuroprotective Agents/therapeutic use*
;
Drugs, Chinese Herbal/chemistry*
;
Biological Products/therapeutic use*
;
Stroke/drug therapy*
6.Biological essence of blood stasis-heat syndrome in ischemic stroke and current research status of traditional Chinese medicine prevention and treatment based on thromboinflammation reaction.
China Journal of Chinese Materia Medica 2024;49(23):6533-6540
Blood stasis-heat syndrome is one of the common syndromes of ischemic stroke, which is manifested as syndromes of blood stasis and heat during the pathological progression of patients with ischemic stroke, but there is a lack of systematic research on its biological essence. Thromboinflammation reaction is a newly proposed pathological mechanism highly associated with thrombosis and inflammatory reaction, and it refers to the fact that under the mediation of von Willebrand factor(vWF) and the kallikrein-kinin system, thrombosis and inflammatory reaction interact with each other. Activation of T cells and neutrophils further aggravates thrombosis and worsens the pathological progression of ischemic stroke. Therefore, thromboinflammation reaction has the characteristics of the interaction between blood stasis and heat in blood stasis-heat syndrome in traditional Chinese medicine(TCM). Based on the research progress related to thromboinflammation reaction and the clinical syndrome characteristics and biomarkers of blood stasis-heat syndrome in ischemic stroke, this paper put forward the view that thromboinflammation reaction may be the biological foundation of blood stasis-heat syndrome in ischemic stroke. Besides, this paper systematically organized the current applications and research on the mechanism of TCM monomers or compound formulas with the effects of promoting blood circulation to remove blood stasis and clearing heat and detoxifying. It is found that the pharmacological mechanisms are intimately linked to the regulation of biomarkers related to thromboinflammation reaction, verifying that the biological foundation of the blood stasis-heat syndrome in ischemic stroke is thromboinflammation reaction. This paper aims to provide a scientific basis for TCM prevention and treatment strategies for ischemic stroke targeting thromboinflammation reaction.
Humans
;
Medicine, Chinese Traditional
;
Ischemic Stroke/blood*
;
Drugs, Chinese Herbal/therapeutic use*
;
Thromboinflammation/drug therapy*
;
Animals
;
Syndrome
7.Functionalized exosome-loaded ginsenoside Rg1 for the treatment of ischemic stroke.
Huijun LUO ; Zhixuan HUANG ; Yijie SHI
Chinese Journal of Biotechnology 2023;39(1):275-285
The aim of this study was to investigate the therapeutic effects and potential mechanism of c(RGDyK) peptide modified mesenchymal stem cell exosomes loaded with ginsenoside Rg1 (G-Rg1) on ischemic stroke. Thread-tying method was used to establish SD rats transient middle cerebral occlusion model (tMCAO). The model rats were randomly divided into tMCAO group, Exo group, free G-Rg1 group, Exo-Rg1 group and cRGD-Exo-Rg1 group, and sham group was used as control. The infarct volume was measured by 2, 3, 5-triphenyltetrachloride (TTC) staining, the changes of neuron and endothelium were observed by immunofluorescence, and the expression of related proteins was detected by Western blotting. The results showed that cRGD-Exo-Rg1 up-regulated the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIF-1α) by activating PI3K/AKT pathway, thus promoting angiogenesis and neurogenesis, effectively reducing the volume of cerebral infarction and improving neural function. In addition, the delivery of cRGD-Exo-Rg1 to ischemic brain tissue up-regulated the expression of occludin and claudin-5, and reduced the injury of blood-brain barrier. Taken together, cRGD-Exo-Rg1 was effective in the treatment of ischemic stroke by promoting angiogenesis and neurogenesis, which provided experimental evidence for the potential clinical benefits of other neuroprotective therapies.
Rats
;
Animals
;
Ischemic Stroke/drug therapy*
;
Rats, Sprague-Dawley
;
Phosphatidylinositol 3-Kinases
;
Vascular Endothelial Growth Factor A/metabolism*
;
Exosomes/metabolism*
;
Ginsenosides/therapeutic use*
8.Network Meta-analysis of Chinese medicine injections for activating blood and resolving stasis in adjuvant treatment of acute ischemic stroke.
Shi-Xiong PENG ; Cong WEI ; Jing-Ying LEI ; Teng ZHANG ; Yan-Bing DING
China Journal of Chinese Materia Medica 2023;48(15):4215-4230
Network Meta-analysis was employed to compare the efficacy of Chinese medicine injections for activating blood and resolving stasis combined with conventional western medicine in the treatment of acute ischemic stroke and the effects on platelet aggregation rate, fibrinogen(FIB), and hypersensitive C-reactive protein(hs-CRP), with a view to providing evidence-based medicine reference for clinical medication. CNKI, Wanfang, VIP, SinoMed, PubMed, Web of Science, Cochrane Library, and EMbase were searched for randomized controlled trial(RCT) on the treatment of acute ischemic stroke with Salvia Miltiorrhiza Ligustrazine Injection, Danhong Injection, Shuxuetong Injection, Xueshuantong Injection, Shuxuening Injection, Safflower Yellow Pigment Injection, and Ginkgo Diterpene Lactone Meglumine Injection combined with conventional western medicine. The retrieval time was from database inception to March 18, 2023. The articles were extracted by two researchers and their quality was evaluated. R 4.2.2 was used for network Meta-analysis. A total of 87 RCTs involving 8 580 patients were included. Network Meta-analysis showed that, in terms of reducing National Institutes of Health stroke scale(NIHSS) scores, the surface under the cumulative ranking curve(SUCRA) showed the order of Xueshuantong Injection + conventional western medicine(88.7%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(73.7%) > Shuxuetong Injection + conventional western medicine(69.7%) > Shuxuening Injection + conventional western medicine(51.8%) > Danhong Injection + conventional western medicine(43.7%) > Safflower Yellow Pigment Injection + conventional western medicine(36.8%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(35.3%) > conventional western medicine(1.7%). In terms of improving clinical total effective rate, SUCRA showed the order of Danhong Injection + conventional western medicine(63.0%) > Shuxuening Injection + conventional western medicine(59.0%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(58.9%) > Safflower Yellow Pigment Injection + conventional western medicine(57.1%) > Xueshuantong Injection + conventional western medicine(56.8%) > Shuxuetong Injection + conventional western medicine(54.6%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(50.5%) > conventional western medicine(0.03%). In terms of improving Barthel index, SUCRA showed the order of Danhong Injection + conventional western medicine(84.7%) > Shuxuetong Injection + conventional western medicine(72.4%) > Safflower Yellow Pigment Injection + conventional western medicine(61.6%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(44.6%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(43.2%) > Shuxuening Injection + conventional western medicine(42.2%) > conventional western medicine(1.4%). In terms of reducing platelet aggregation rate, SUCRA showed the order of Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(82.4%) > Shuxuetong Injection + conventional western medicine(81.6%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(40.7%) > Danhong Injection + conventional western medicine(37.3%) > conventional western medicine(8.0%). In terms of reducing FIB, SUCRA showed the order of Danhong Injection + conventional western medicine(81.0%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(71.9%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(70.0%) > Shuxuetong Injection + conventional western medicine(46.7%) > Xueshuantong Injection + conventional western medicine(22.6%) > conventional western medicine(8.7%). In terms of reducing hs-CRP, SUCRA showed the order of Shuxuening Injection + conventional western medicine(89.9%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(78.8%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(52.4%) > Danhong Injection + conventional western medicine(47.6%) > Xueshuantong Injection + conventional western medicine(43.5%) > Shuxuetong Injection + conventional Western medicine(35.6%) > conventional western medicine(2.3%). The results indicated that Xueshuantong Injection + conventional western medicine, Danhong Injection + conventional western medicine, and Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine ranked the top three. Xueshuantong Injection + conventional western medicine had the best effect on reducing NIHSS scores. Danhong Injection + conventional western medicine showed the best performance of improving clinical total effective rate, improving Barthel index, and reducing FIB in the blood. Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine had the best effect on reducing platelet aggregation rate in the blood. Shuxuening Injection + conventional western medicine had the best effect on reducing hs-CRP. However, more high-quality RCTs are needed for verification in the future to provide more reliable evidence-based medical reference.
Humans
;
Medicine, Chinese Traditional
;
Ischemic Stroke/drug therapy*
;
Network Meta-Analysis
;
C-Reactive Protein
;
Drugs, Chinese Herbal/therapeutic use*
;
Adjuvants, Pharmaceutic
;
Diterpenes
;
Lactones
;
Meglumine
9.Active components and potential mechanism of Taohong Siwu Decoction in regulating ischemic stroke based on target cell trapping combined with network pharmacology, molecular docking, and experimental validation.
Lin-Feng TANG ; Hao CHANG ; Dan-Dan WANG ; Zhu-Qing LIU ; Lan HAN ; Dai-Yin PENG
China Journal of Chinese Materia Medica 2023;48(17):4761-4773
The potential anti-stroke active components in Taohong Siwu Decoction(THSWD) were identified by target cell trapping coupled with ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS). The underlying mechanism of active components in THSWD in the treatment of ischemic stroke(IS) was explored by network pharmacology, molecular docking, and experimental validation. The UPLC-Q-TOF-MS technology combined with the UNIFI data analysis platform was used to analyze the composition of the cellular fragmentation fluid after co-incubation of THSWD with target cells. The targets of potential active components and IS were collected by network pharmacology, and the common targets underwent protein-protein interaction(PPI), Gene Ontology(GO), and Kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway enrichment analyses. The target cell trapping component-core target-signaling pathway network was constructed, and the active components were molecularly docked to the top targets in the PPI network, followed by pharmacodynamic validation in vitro. Fifteen active components were identified in the target cellular fragmentation fluid, including bicyclic monoterpenes, cyanoglycosides, flavonols, quinoid chalcones, phenylpropanoids, and tannins. As revealed by the analysis of network pharmacology, THSWD presumably regulated PI3K-AKT, FoxO, MAPK, Jak-STAT, VEGF, HIF-1, and other signaling pathways to affect inflammatory cascade reaction, angiogenesis, oxidative stress, pyroptosis, apoptosis, and other pathological processes via paeoniflorin, butylphthalide, dehydrated safflower yellow B, 3,4-dicaffeoylquinic acid, amygdalin, paeoniflorin, and ligusticolactone. Molecular docking and in vitro pharmacodynamic validation revealed that the target cell trapping active components could promote neovascularization in rat brain microvascular endothelial cells(rBMECs) in the oxygen-glucose deprivation/reoxygenation(OGD/R) model. The application of target cell trapping coupled with UPLC-Q-TOF-MS technology can rapidly screen out the potential active components in THSWD. The active components of THSWD can be predicted to intervene in the pathogenesis of IS through network pharmacology, and molecular docking combined with experimental validation can further clarify the efficacy, thus providing a theoretical basis for research ideas on the pharmacodynamic substance basis of traditional Chinese medicine compounds.
Animals
;
Rats
;
Ischemic Stroke/drug therapy*
;
Molecular Docking Simulation
;
Network Pharmacology
;
Endothelial Cells
;
Phosphatidylinositol 3-Kinases
;
Drugs, Chinese Herbal/pharmacology*
10.Research progress in pathogenesis and traditional Chinese medicines treatment of ischemic stroke-related headache.
Yu-Meng PENG ; Jun-Qi WANG ; Ying-Lu BAI ; Yan WANG ; Rao FU ; Yi-Yu LIU ; Zhi-Yong LI ; Xiu-Lan HUANG
China Journal of Chinese Materia Medica 2023;48(16):4261-4274
Headache is a common clinical complication of ischemic stroke. As a precursor of stroke, headache occurs repeatedly in the convalescent period of ischemic stroke, leading to secondary stroke and seriously hindering patients' rehabilitation. Currently, it is believed that the pathogenesis of ischemic stroke-related headache is associated with the abnormal release of vasoactive substances, high platelet aggregation, and stimulation of intracranial pain-sensitive structures. The active ingredients in traditional Chinese medicines(TCM) with the effects of activating blood to resolve stasis and clearing heat to release exterior can protect brain tissue and relieve headache by reducing the release of inflammatory cytokines, alleviating antioxidant stress, inhibiting neuronal apoptosis and so on. This paper introduces the research progress in the potential mechanism and TCM treatment of ischemic stroke-related headache, aiming to provide reference for further research and drug development of this complication.
Humans
;
Ischemic Stroke/drug therapy*
;
Brain Ischemia/drug therapy*
;
Medicine, Chinese Traditional
;
Stroke/drug therapy*
;
Headache/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*

Result Analysis
Print
Save
E-mail