1.Platelet Rich Plasma and Culture Configuration Affect the Matrix Forming Phenotype of Bone Marrow Stromal Cells.
Arantza INFANTE ; Eva RUBIO-AZPEITIA ; Patricia SA´NCHEZ ; Rau´l ALBERDI ; Clara I RODRIGUEZ ; Isabel ANDIA
Tissue Engineering and Regenerative Medicine 2017;14(5):567-577
We aim to examine the influence of platelet rich plasma (PRP) and spatial cues in cartilage/bone matrix forming proteins, and to evaluate the mitotic and chemotactic potential of PRP on human mesenchymal stem cells (hMSCs). Directed cell migration towards PRP gradients was assessed in chemotactic chambers, and recorded by time-lapse microscopy. hMSCs cultured in three-dimensional (3D) scaffolds were visualized by scanning electron microscopy; Hoechst dye was used to confirm cell confluence in 3D-constructs and monolayers before experimental treatment. MSCs were treated with 10% PRP lysate or 10% PRP lysate supplemented with TGF-β-based differentiation medium. The expression of cartilage (COL2A1, Sox9, ACAN, COMP), and bone (COL1A1, VEGF, COL10A1, Runx2) fundamental genes was assessed by real time PCR in monolayers and 3D-constructs. PRP had mitotic (p <.001), and chemotactic effect on hMSCs, Ralyleigh test p = 1.02E - 10. Two and three-week exposure of MSCs to PRP secretome in 3Dconstructs or monolayers decreased Sox9 expression (p <0.001 and p = 0.050) and COL2A1, (p = 0.011 and p = 0.019). MSCs in monolayers exposed to PRP showed increased ACAN (p = 0.050) and COMP (p <0.001). Adding TGF-β-based differentiation medium to PRP increased COMP, and COL2A1 expression at gene and protein level, but merely in 3D-constructs, p <0.001. TGF-β addition to monolayers reduced Sox9 (p <0.001), aggrecan (p = 0.004), and VEGF (p = 0.004). Cells exposed to PRP showed no changes in hypertrophy associated genes in either monolayers or 3Dconstructs. Our study suggests hMSCs have high-degree of plasticity having the potential to change their matrix-forming phenotype when exposed to PRP and according to spatial configuration.
Aggrecans
;
Blood Platelets*
;
Bone Marrow*
;
Cartilage
;
Cell Movement
;
Cues
;
Humans
;
Hypertrophy
;
Mesenchymal Stromal Cells*
;
Microscopy
;
Microscopy, Electron, Scanning
;
Phenotype*
;
Plastics
;
Platelet-Rich Plasma*
;
Real-Time Polymerase Chain Reaction
;
Vascular Endothelial Growth Factor A
2.Platelet-rich plasma: combinational treatment modalities for musculoskeletal conditions.
Frontiers of Medicine 2018;12(2):139-152
Current research on common musculoskeletal problems, including osteoarticular conditions, tendinopathies, and muscle injuries, focuses on regenerative translational medicine. Platelet-rich plasma therapies have emerged as a potential approach to enhance tissue repair and regeneration. Platelet-rich plasma application aims to provide supraphysiological concentrations of platelets and optionally leukocytes at injured/pathological tissues mimicking the initial stages of healing. However, the efficacy of platelet-rich plasma is controversial in chronic diseases because patients' outcomes show partial improvements. Platelet-rich plasma can be customized to specific conditions by selecting the most appropriate formulation and timing for application or by combining platelet-rich plasma with synergistic or complementary treatments. To achieve this goal, researchers should identify and enhance the main mechanisms of healing. In this review, the interactions between platelet-rich plasma and healing mechanisms were addressed and research opportunities for customized treatment modalities were outlined. The development of combinational platelet-rich plasma treatments that can be used safely and effectively to manipulate healing mechanisms would be valuable and would provide insights into the processes involved in physiological healing and pathological failure.
Combined Modality Therapy
;
Humans
;
Musculoskeletal Diseases
;
therapy
;
Platelet-Rich Plasma
;
Randomized Controlled Trials as Topic
;
Regenerative Medicine
;
Wound Healing