4.Effect of NaFeEDTA on hemoglobin level in iron deficient population: a systematic review.
Bo WANG ; Si-yan ZHAN ; Yin-yin XIA ; Li-ming LI
Chinese Journal of Epidemiology 2008;29(1):65-70
OBJECTIVETo evaluate the effect of NaFeEDTA on hemoglobin level in iron deficient population.
METHODSComprehensive literature retrieval was performed via searching electronic databases, hand searching bibliographies of books and relevant journals, collecting grey literatures, looking into conference abstracts, contacting fields experts and reviewing references and citations. Criteria from Cochrane EPOC review group were used to assess the quality of included studies. Generic inverse variance method was used to undertake meta-analysis.
RESULTSThe pooled estimate for hemoglobin level (weighted mean difference) was 12.14 g/L (95% CI: 5.60-18.69; P < 0.001). Subgroup analysis indicated that lower baseline hemoglobin level and higher dose for intervention were associated to greater increase in hemoglobin level.
CONCLUSIONThis systematic review indicated that NaFeEDTA improved hemoglobin significantly in iron deficient population.
Anemia, Iron-Deficiency ; blood ; drug therapy ; metabolism ; Edetic Acid ; therapeutic use ; Ferric Compounds ; therapeutic use ; Hemoglobins ; metabolism ; Humans ; Iron Chelating Agents ; therapeutic use
5.Efficacy and safety of deferasirox in aplastic anemia patients with iron overload: a single arm, multi-center,prospective study in China.
Jun SHI ; Hong CHANG ; Li ZHANG ; Yinqi SHAO ; Neng NIE ; Jing ZHANG ; Jinbo HUANG ; Li ZHANG ; Xudong TANG ; Richeng QUAN ; Chunmei ZHENG ; Haiyan XIAO ; Dengming HU ; Lingyan HU ; Feng LIU ; Yongming ZHOU ; Yizhou ZHENG ; Fengkui ZHANG
Chinese Journal of Hematology 2016;37(1):1-6
OBJECTIVETo explore the efficacy and safety of deferasirox in aplastic anemia (AA)patients with iron overload.
METHODSA single arm, multi- center, prospective, open- label study was conducted to evaluate absolute change in serum ferritin (SF)from baseline to 12 months of deferasirox administration, initially at a dose of 20 mg·kg(-1)·d(-1), and the safety in 64 AA patients with iron overload.
RESULTSAll patients started their deferasirox treatment with a daily dose of 20 mg · kg(-1) ·d(-1). The mean actual dose was (18.6±3.60) mg · kg(-1)·d(-1). The median SF decreased from 4 924 (2 718- 6 765)μg/L at baseline (n=64) to 3 036 (1 474- 5 551)μg/L at 12 months (n=23) with the percentage change from baseline as 38%. A median SF decrease of 651 (126-2 125)μg/L was observed at the end of study in 23 patients who completed 12 months' treatment, the median SF level decreased by 1 167(580-4 806)μg/L [5 271(3 420-8 278)μg/L at baseline; 3 036(1 474-5 551)μg/L after 12 months' treatment; the percentage change from baseline as 42% ] after 12 months of deferasirox treatment. The most common adverse events (AEs) were increased serum creatinine levels (40.98%), gastrointestinal discomfort (40.98%), elevated liver transaminase (ALT: 21.31%; AST: 13.11%)and proteinuria (24.59%). The increased serum creatinine levels were reversible and non-progressive. Of 38 patients with concomitant cyclosporine use, 12(31.8%)patients had two consecutive values >ULN, 10(26.3%)patients had two consecutive values >1.33 baseline values, but only 1(2.6%)patient's serum creatinine increased more than 1.33 baseline values and exceeded ULN. For both AST and ALT, no patients experienced two post- baseline values >5 ×ULN or >10 × ULN during the whole study. In AA patients with low baseline PLT count (less than 50 × 10(9)/L), there was no decrease for median PLT level during 12 months' treatment period.
CONCLUSIONSAA patients with iron overload could achieve satisfactory efficacy of iron chelation by deferasirox treatment. The drug was well tolerated with a clinically manageable safety profile and no major adverse events.
Anemia, Aplastic ; drug therapy ; Benzoates ; therapeutic use ; Blood Transfusion ; China ; Ferritins ; blood ; Humans ; Iron ; blood ; Iron Chelating Agents ; therapeutic use ; Iron Overload ; drug therapy ; Liver ; Prospective Studies ; Triazoles ; therapeutic use
6.Efficacy and Mechanism of Buxue Yimu Pills on Gynecological Anemia: A Combination of Clinical and Network Pharmacology Study.
Yan-Fang WANG ; Yan DENG ; Su-Ying ZHANG ; Dong LIU ; Bin LUO ; Xue WANG ; Miao DENG ; Rui-Lin MA ; Ai-Jun SUN
Chinese journal of integrative medicine 2022;28(12):1072-1080
OBJECTIVE:
To compare the clinical efficacy and safety of oral administration of Buxue Yimu Pills (BYP, ), ferrous sulfate (FS), and the combination of BYP and FS on gynecological anemia, and investigate the mechanisms using network pharmacology.
METHODS:
A randomized, controlled, multi-center clinical trial was conducted. Totally 150 patients with hemoglobin of 70-110 g/L due to gynecological conditions were recruited and randomized (using the block randomization method) into Buxue Yimu Pills group (24 g/d), oral iron group (FS Tablets, 0.9 g/d), and combined treatment group (BYP, 24 g/d plus FS Tablets, 0.9 g/d), 50 patients in each group. At the enrollment and 4-week treatment, complete blood count, serum iron indexes were evaluated. Adverse events, liver and renal functions, as well as blood coagulation were observed. Network pharmacology was conducted to identify the active ingredients and explore the potential mechanisms of BYP.
RESULTS:
Ten (20%) and 7 (14%) participants discontinued the therapy due to gastrointestinal symptoms in oral iron and combination treatment groups. All 3 groups showed elevated hemoglobin. The patients in the iron group exhibited typically elevated in serum iron and ferritin and decreased in total iron-binding capacity. No change in iron indexes was observed in BYP group. The patients in the combination treatment group neither showed significant changes in serum ferritin nor total iron-binding capacity. No significant adverse reactions were observed in the BYP group. The network pharmacology identified 27 bioactive compounds and 145 targets of BYP on gynecological anemia. Biological processes and pathways including regulation of inflammation, hormone, angiogenesis and hemostasis, response to decreased oxygen levels, effects on myeloma cell, and response to metal ions were identified.
CONCLUSION
BYP contributes to the practical improvement on gynecological anemia potentially through multi-target mechanisms and optimized iron re-distribution. (Trial registration: No. NCT03232554).
Humans
;
Anemia/drug therapy*
;
Anemia, Iron-Deficiency/drug therapy*
;
Ferritins/therapeutic use*
;
Hemoglobins
;
Iron/therapeutic use*
;
Network Pharmacology
;
Drugs, Chinese Herbal
7.Effects of vitamin A, vitamin A plus iron and multiple micronutrient-fortified seasoning powder on iron metabolic homeostasis.
Ke CHEN ; Yong-fang LIU ; Li CHEN ; Xuan ZHANG ; You-xue LIU ; Jie CHEN ; Ting-yu LI
Chinese Journal of Pediatrics 2011;49(12):926-932
OBJECTIVETo evaluate the effect of vitamin A, vitamin A plus iron and "7 + 1" multiple micronutrient-fortified seasoning powder on iron metabolic homeostasis in preschool children.
METHODSThis was a randomized, controlled and blinded interventional field trial. A total of 226 2 - 7 years old preschool children were recruited from three nurseries in the area, and they were randomly assigned into three different fortified diet groups for 6 months. The subjects in Group I were fortified with vitamin A; those in Group II and III were fortified with vitamin A plus iron and vitamin A plus iron, thiamine, riboflavin, folic acid, niacinamide, zinc and calcium (7 + 1), respectively. The concentration of serum vitamin A was measured by high-performance liquid chromatography (HPLC), serum ferritin (SF) was measured by enzyme-linked immunosorbent assay (ELISA), soluble transferrin receptor (sTfR) was measured by microparticle-enhanced, and hemoglobin (HB) by hemiglobincyanide, the sTfR-SF index (TFR-F index) and total body iron content were computed respectively before and after intervention. Simultaneously, children's demographic data, socio-economic status and eating habits, etc. were investigated by questionnaires.
RESULTSA total of 226 preschool children were included in the study with age ranged from 2 to 7 years with average age (4.0 ± 0.85) (means ± standard deviation). The prevalence of anemia, deficient iron storage, vitamin A deficiency (VAD) and suspect sub-clinical vitamin A deficiency (SSVAD) were 23.5%, 15.0%, 6.3% and 25.9%, respectively. The levels of SF and sTfR significantly decreased after intervention in all groups (χ(2) = 8.3298, χ(2) = 16.1471, χ(2) = 15.1371, χ(2) = 15.1171, χ(2) = 5.2617, χ(2) = 4.8844, P < 0.05) especially in group II and group III for SF (χ(2) = 16.1471, χ(2) = 15.1371, P < 0.05) and group I for sTfR (χ(2) = 15.1171, P < 0.05). No marked change of TFR-F index and total body iron contents was observed in group I (t = 0.1817, t = 1.7736, P > 0.05), while TFR-F index decreased and total body iron contents increased in group II and group III (t = 5.3561, t = 6.5979, t = 11.1663, t = 8.7306, P < 0.05) after intervention.
CONCLUSIONVitamin A intervention has significant effect on iron storage and mobilization but seldom effect on iron absorption in small intestine. The combination of vitamin A and other micronutrients might be a better intervention for the improvement of iron deficiency for preschool-children.
Anemia, Iron-Deficiency ; prevention & control ; Child ; Child, Preschool ; Female ; Food, Fortified ; Humans ; Iron ; deficiency ; metabolism ; Male ; Micronutrients ; therapeutic use ; Vitamin A ; therapeutic use
8.Effect of NaFeEDTA on serum ferritin level in iron deficient epidemic population: a systematic review.
Bo WANG ; Si-yan ZHAN ; Yin-yin XIA ; Li-ming LI
Chinese Journal of Preventive Medicine 2008;42(6):437-441
OBJECTIVETo evaluate effect of NaFeEDTA on serum ferritin level in iron deficient epidemic population.
METHODSA comprehensive literature retrieval was performed via searching electronic databases, hand searching bibliographies of books and relevant journals, collecting grey literatures, looking into conference abstracts, contacting fields experts and reviewing references and citations. Criteria from Cochrane EPOC review group were used to assess the quality of the included studies. Generic inverse variance method was used to undertake Meta-analysis.
RESULTSThe pooled estimate for serum ferritin level (weighted mean difference) was 1.58 microg/L (95% CI 1.20-2.09; P < 0.001).
CONCLUSIONThis systematic review indicates that NaFeEDTA might improve serum ferritin concentration significantly in iron deficient epidemic population.
Anemia, Iron-Deficiency ; drug therapy ; Edetic Acid ; therapeutic use ; Ferric Compounds ; therapeutic use ; Ferritins ; blood ; Humans ; Iron, Dietary ; Randomized Controlled Trials as Topic
9.The efficacy and safety of intravenous sucrose iron therapy for recurrent iron deficiency anemia.
Jing Qian LIU ; Xia Wan YANG ; Xu LIU ; Jing HU ; Xiang Rong HU ; Xiao Xia LI ; Yu Fei ZHAO ; Yi Meng SHI ; Bao Hang ZHANG ; Wen Rui YANG ; Guang Xin PENG ; Xin ZHAO ; Feng Kui ZHANG
Chinese Journal of Hematology 2023;44(5):408-412
Objective: To evaluate the efficacy and safety of intravenous iron supplementation in patients with recurrent iron deficiency anemia (IDA) . Methods: This retrospective analysis of 90 patients with recurrent IDA from May 2012 to December 2021 was conducted, comparing the efficacy and safety of the intravenous iron therapy group and the oral iron therapy group. Results: Among the 90 patients with recurrent IDA, 20 were males and 70 were females, with a median age of 40 (range: 14-85) years. A total of 60 patients received intravenous iron supplementation and 30 received oral iron supplementation. The hematologic response rates in the intravenous iron group were significantly higher than those in the oral iron group at 4 and 8 weeks after treatment [80.0% (48/60) vs 3.3% (1/30) and 96.7% (58/60) vs 46.7% (14/30), all P<0.001, respectively]. The median increase in hemoglobin levels was also significantly higher in the intravenous iron group than in the oral iron group [38 (4, 66) g/L vs 7 (1, 22) g/L at week 4 and 44.5 (18, 80) g/L vs 19 (3, 53) g/L at week 8, all P<0.001]. The intravenous iron group had a significantly higher proportion of patients who achieved normal hemoglobin levels than the oral iron group (55.0% vs 0 and 90% vs 43.3%, all P<0.001, respectively). Iron metabolism indicators were tested before and after 8 weeks of treatment in 26 and 7 patients in the intravenous and oral iron groups, respectively. The median increase in serum ferritin (SF) levels in the intravenous iron group 8 weeks after treatment was 113.7 (49.7, 413.5) μg/L, and 54% (14/26) of these patients had SF levels of ≥100 μg/L, which was significantly higher than the median increase in SF levels in the oral iron group [14.0 (5.8, 84.2) μg/L, t=4.760, P<0.001] and the proportion of patients with SF levels of ≥100 μg/L (P=0.013). The incidence of adverse reactions was 3.3% (2/60) in the intravenous iron group, which was significantly lower than that in the oral iron group [20.0% (6/30), P=0.015]. Conclusion: Intravenous iron supplementation is more effective for hematologic response, faster hemoglobin increase, and higher iron storage replenishment rates compared with oral iron supplementation in patients with recurrent IDA, and it is well tolerated by patients.
Male
;
Female
;
Humans
;
Adolescent
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Anemia, Iron-Deficiency/epidemiology*
;
Sucrose/therapeutic use*
;
Ferric Compounds/therapeutic use*
;
Retrospective Studies
;
Iron/therapeutic use*
;
Hemoglobins/therapeutic use*
10.Korean Guideline for Iron Chelation Therapy in Transfusion-Induced Iron Overload.
Jun Ho JANG ; Je Hwan LEE ; Sung Soo YOON ; Deog Yeon JO ; Hyeoung Joon KIM ; Jooseop CHUNG ; Jong Wook LEE
Journal of Korean Medical Science 2013;28(11):1563-1572
Many Korean patients with transfusion-induced iron overload experience serious clinical sequelae, including organ damage, and require lifelong chelation therapy. However, due to a lack of compliance and/or unavailability of an appropriate chelator, most patients have not been treated effectively. Deferasirox (DFX), a once-daily oral iron chelator for both adult and pediatric patients with transfusion-induced iron overload, is now available in Korea. The effectiveness of deferasirox in reducing or maintaining body iron has been demonstrated in many studies of patients with a variety of transfusion-induced anemias such as myelodysplastic syndromes, aplastic anemia, and other chronic anemias. The recommended initial daily dose of DFX is 20 mg/kg body weight, taken on an empty stomach at least 30 min before food and serum ferritin levels should be maintained below 1000 ng/mL. To optimize the management of transfusion-induced iron overload, the Korean Society of Hematology Aplastic Anemia Working Party (KSHAAWP) reviewed the general consensus on iron overload and the Korean data on the clinical benefits of iron chelation therapy, and developed a Korean guideline for the treatment of iron overload.
Anemia, Aplastic/therapy
;
Benzoates/therapeutic use
;
Blood Transfusion/*adverse effects
;
Chelation Therapy/*methods
;
Humans
;
Iron Chelating Agents/*therapeutic use
;
Iron Overload/*therapy
;
Myelodysplastic Syndromes/therapy
;
Pyridones/therapeutic use
;
Republic of Korea
;
Triazoles/therapeutic use