1.The cystic fibrosis transmembrane conductance regulator Cl⁻ channel: a versatile engine for transepithelial ion transport.
Hongyu LI ; Zhiwei CAI ; Jeng-Haur CHEN ; Min JU ; Zhe XU ; David N SHEPPARD
Acta Physiologica Sinica 2007;59(4):416-430
The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) transporter superfamily that forms a Cl(-) channel with complex regulation. CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs) and a unique regulatory domain (RD). The MSDs assemble to form a low conductance (6-10 pS) anion-selective pore with deep intracellular and shallow extracellular vestibules separated by a selectivity filter. The NBDs form a head-to-tail dimer with two ATP-binding sites (termed sites 1 and 2) located at the dimer interface. Anion flow through CFTR is gated by the interaction of ATP with sites 1 and 2 powering cycles of NBD dimer association and dissociation and hence, conformational changes in the MSDs that open and close the channel pore. The RD is an unstructured domain with multiple consensus phosphorylation sites, phosphorylation of which stimulates CFTR function by enhancing the interaction of ATP with the NBDs. Tight spatial and temporal control of CFTR activity is achieved by macromolecular signalling complexes in which scaffolding proteins colocalise CFTR and plasma membrane receptors with protein kinases and phosphatases. Moreover, a macromolecular complex composed of CFTR and metabolic enzymes (a CFTR metabolon) permits CFTR activity to be coupled tightly to metabolic pathways within cells so that CFTR inhibition conserves vital energy stores. CFTR is expressed in epithelial tissues throughout the body, lining ducts and tubes. It functions to control the quantity and composition of epithelial secretions by driving either the absorption or secretion of salt and water. Of note, in the respiratory airways CFTR plays an additional important role in host defence. Malfunction of CFTR disrupts transepithelial ion transport leading to a wide spectrum of human disease.
Cystic Fibrosis Transmembrane Conductance Regulator
;
physiology
;
Epithelium
;
physiology
;
Humans
;
Ion Transport
;
Phosphorylation
;
Protein Interaction Domains and Motifs
2.Progress in the physiological and pathophysiological functions of sodium calcium exchangers.
Jun-Jie SU ; Ge-Yao QI ; Xiao-Zhi DANG ; Nian YANG ; Jun ZHANG
Acta Physiologica Sinica 2014;66(2):241-251
Sodium calcium exchanger (NCX), which is widely expressed in the plasma membrane, mitochondrial membrane and secretory vesicles in diverse kinds of cells, belongs to a type of cation translocators. NCX works in two modes, the forward mode and reverse mode, to regulate the intracellular Ca(2+) concentration bi-directionally. In the forward mode, NCX carries Ca(2+) out of the cell against its electrochemical gradients coupled to the influx of Na(+) down its electrochemical gradients; alternatively, Ca(2+) enters through the reverse mode of NCX, and Na(+) is carried out of the cell. Exactly through the two-way modes, NCX can regulate intracellular Ca(2+) concentration fleetly and accurately, and plays a critical role in a series of physiological processes including intracellular signal transduction, growth and development of cells, excitation and its coupled functions of excitable cells. NCX are acknowledged to be involved in myofiber contraction, neurotransmission, migration and differentiation of neurogliocyte, activation of immune cells, secretion of cytokines and hormones etc. Moreover, abnormal activation of the reverse mode of NCX plays a vital role in many pathological processes including cell apoptosis, ischemia-reperfusion injury, insulin secretion, tumor etc. Here we reviewed the research status about the NCX's participation in some physiological and pathophysiological processes, so as to provide comprehensive understanding about its functions.
Animals
;
Apoptosis
;
Calcium
;
physiology
;
Humans
;
Ion Transport
;
Reperfusion Injury
;
physiopathology
;
Signal Transduction
;
Sodium
;
physiology
;
Sodium-Calcium Exchanger
;
physiology
3.Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.
Acta Physiologica Sinica 2014;66(1):16-22
The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.
Biological Transport
;
Cell Membrane
;
physiology
;
Chloride Channels
;
physiology
;
Cyclic AMP
;
physiology
;
Cytokines
;
immunology
;
Epithelial Cells
;
physiology
;
Epithelium
;
immunology
;
physiology
;
Humans
;
Ion Transport
;
Receptors, Purinergic P2Y
;
immunology
;
physiology
;
Signal Transduction
4.A brief introduction to the secretion mechanism in immunocytes.
Xue-Lin LOU ; Li-Min HE ; Fei-Li GONG ; Xiao YU ; Tao XU ; Zhuan ZHOU
Acta Physiologica Sinica 2002;54(3):183-188
Exocytosis is a vital function of many cell types including neuron, endocrine cell and immunocyte. Secretion in immunocytes involves a complex process of signal transduction, in which many factors still remain unknown. In the last 10 years, this area has become an international hot spot of investigation, resulting in many break-through progresses. This progress was made possible by combined efforts in molecular biology, cell biology and biophysics. This review focuses on notable new knowledge and some new techniques in functional study of secretion in immunocytes.
Exocytosis
;
physiology
;
Humans
;
Ion Channels
;
physiology
;
Lymphocytes
;
immunology
;
secretion
;
Mast Cells
;
immunology
;
secretion
;
Membrane Proteins
;
physiology
;
Neutrophils
;
immunology
;
secretion
;
SNARE Proteins
;
Signal Transduction
;
physiology
;
Vesicular Transport Proteins
5.Heterogeneous Composition of Voltage-Dependent K+ Currents in Hepatic Stellate Cells.
Dong Hyeon LEE ; Kuchan KIMM ; Hyung Lae KIM ; Bok Ghee HAN
Yonsei Medical Journal 2007;48(4):684-693
PURPOSE: Hepatic stellate cells (HSC) are a type of pericyte with varying characteristics according to their location. However, the electrophysiological properties of HSC are not completely understood. Therefore, this study investigated the difference in the voltage-dependent K(+) currents in HSC. MATERIALS AND METHODS: The voltage-dependent K(+) currents in rat HSC were evaluated using the whole cell configuration of the patch-clamp technique. RESULTS: Four different types of voltage-dependent K(+) currents in HSC were identified based on the outward and inward K(+) currents. Type D had the dominant delayed rectifier K(+) current, and type A had the dominant transient outward K(+) current. Type I had an inwardly rectifying K(+) current, whereas the non-type I did not. TEA (5mM) and 4-AP (2mM) suppressed the outward K(+) currents differentially in type D and A. Changing the holding potential from -80 to -40mV reduced the amplitude of the transient outward K(+) currents in type A. The inwardly rectifying K(+) currents either declined markedly or were sustained in type I during the hyperpolarizing step pulses from -120 to -150mV. CONCLUSION: There are four different configurations of voltage-dependent K(+) currents expressed in cultured HSC. These results are expected to provide information that will help determine the properties of the K(+) currents in HSC as well as the different type HSC populations.
Animals
;
Cells, Cultured
;
Electric Conductivity/classification
;
Hepatocytes/*chemistry/classification
;
Ion Transport
;
Patch-Clamp Techniques
;
Potassium Channels, Voltage-Gated/*physiology
;
Rats
6.Molecular mechanism implicated in the initiation of capacitation.
National Journal of Andrology 2003;9(9):693-696
The physiological changes that occur to sperm during the residence in the female tract are collectively referred to as "capacitation". The mechanism of action by which these compounds promote capacitation is poorly understood at the molecular level. However, some molecular events significant to the initiation of capacitation have been identified, such as the correlation of capacitation with cholesterol efflux from the sperm plasma membrane, increased membrane fluidity, modulations in intracellular ion concentrations, hyperpolarization of the sperm plasma membrane and increased protein tyrosine phosphorylation. This review discusses recent progress in elucidation mechanisms which regulate sperm capacitation.
Bicarbonates
;
metabolism
;
Calcium
;
metabolism
;
Cholesterol
;
metabolism
;
Cyclic AMP
;
physiology
;
Humans
;
Ion Transport
;
Male
;
Membrane Potentials
;
Phosphorylation
;
Sperm Capacitation
7.pH-dependent modulation of intracellular free magnesium ions with ionselective electrodes in papillary muscle of guinea pig.
Shang Jin KIM ; In Gook CHO ; Hyung Sub KANG ; Jin Shang KIM
Journal of Veterinary Science 2006;7(1):31-36
A change in pH can alter the intracellular concentration of electrolytes such as intracellular Ca2+ and Na+ ([Na+]i) that are important for the cardiac function. For the determination of the role of pH in the cardiac magnesium homeostasis, the intracellular Mg2+ concentration ([Mg2+]i), membrane potential and contraction in the papillary muscle of guinea pigs using ion-selective electrodes changing extracellular pH ([pH]o) or intracellular pH ([pH]i) were measured in this study. A high CO2-induced low [pH]o causes a significant increase in the [Mg2+]i and [Na+]i, which was accompanied by a decrease in the membrane potential and twitch force. The high [pH]o had the opposite effect. These effects were reversible in both the beating and quiescent muscles. The low [pH]o-induced increase in [Mg2+]i occurred in the absence of [Mg2+]o. The [Mg2+]i was increased by the low [pH]i induced by propionate. The [Mg2+]i was increased by the low [pH]i induced by NH4Cl-prepulse and decreased by the recovery of [pH]i induced by the removal of NH4Cl. These results suggest that the pH can modulate [Mg2+]i with a reverse relationship in heart, probably by affecting the intracellular Mg2+ homeostasis, but not by Mg2+ transport across the sarcolemma.
Animals
;
Cations, Divalent
;
Female
;
Guinea Pigs
;
Heart Ventricles/metabolism
;
Hydrogen-Ion Concentration
;
Ion Transport/physiology
;
Ion-Selective Electrodes/veterinary
;
Magnesium/*metabolism
;
Male
;
Membrane Potentials/physiology
;
Papillary Muscles/*metabolism
;
Propionates/pharmacology
;
Sodium/*metabolism
8.The influence of mitochondrial complex inhibition on neuronal ion channel and neurotransmitter release.
Acta Physiologica Sinica 2012;64(6):713-720
Mitochondrial complex inhibition has been described in the pathophysiology of many neurodegenerative diseases, and the functional changes of neuron induced by mitochondrial complex inhibition and the mechanism are concerned. Neuronal function depends on action potentials and neurotransmitter release. Voltage dependent sodium/potassium ion channels mediate generation of neuron action potentials. And voltage dependent calcium ion channels are directly involved in the process of neurotransmitter release. The functional changes of those ion channels under some pathological conditions can induce neuron dysfunction, even death. Therefore, understanding the influence of mitochondrial complex inhibition on neuronal ion channels and neurotransmitter release is helpful to illuminate the pathophysiology of neurodegenerative diseases. This review will highlight recent progress in this field.
Action Potentials
;
Biological Transport
;
Calcium Channels
;
physiology
;
Humans
;
Ion Channels
;
physiology
;
Mitochondria
;
physiology
;
Neurodegenerative Diseases
;
physiopathology
;
Neurons
;
physiology
;
Neurotransmitter Agents
;
physiology
;
Potassium Channels
;
physiology
;
Sodium Channels
;
physiology
;
Synaptic Transmission
9.A probability wave theory on the ion movement across cell membrane.
Hui ZHANG ; Jiadong XU ; Zhongqi NIU
Journal of Biomedical Engineering 2007;24(2):257-261
The ionic quantity across the channel of the cell membrane decides the cell in a certain life state. The theory analysis that existed on the bio-effects of the electro-magnetic field (EMF) does not unveil the relationship between the EMF exerted on the cell and the ionic quantity across the cell membrane. Based on the cell construction, the existed theory analysis and the experimental results, an ionic probability wave theory is proposed in this paper to explain the biological window-effects of the electromagnetic wave. The theory regards the membrane channel as the periodic potential barrier and gives the physical view of the ion movement across cell-membrane. The theory revises the relationship between ion's energy in cell channel and the frequency exerted EMF. After the application of the concept of the wave function, the ionic probability across the cell membrane is given by the method of the quantum mechanics. The numerical results analyze the physical factors that influences the ion's movement across the cell membrane. These results show that the theory can explain the phenomenon of the biological window-effects.
Animals
;
Biological Transport, Active
;
Cell Membrane
;
physiology
;
radiation effects
;
Cell Membrane Permeability
;
physiology
;
radiation effects
;
Computer Simulation
;
Electromagnetic Fields
;
Ion Channels
;
metabolism
;
Ions
;
metabolism
;
Models, Biological
10.Establishment and application of a cell model for LRRC8A physiological characteristic study.
Yan-Hong ZHOU ; Kai ZHENG ; Zhong-Xue XIA ; Xiao-Ming JIANG ; Wen-Hui DI ; Lian-Xiu XU ; Chao YING ; Feng HAO
Acta Physiologica Sinica 2019;71(4):555-561
The aim of the present study was to establish a cell model of volume-regulated anion channel subunit LRRC8A and investigate the physiological characteristics of LRRC8A. The eukaryotic expression vectors of LRRC8A and YFP-H148Q/I152L were constructed and transfected into Fischer rat thyroid (FRT) cells by Lipofectamine 2000. The FRT cell lines co-expressing LRRC8A and YFP-H148Q/I152L were obtained by antibiotic screening. The expression of LRRC8A and YFP-H148Q/I152L in FRT cells was detected by the inverted fluorescence microscope. The fluorescence quenching kinetic experiment was done to verify the function and effectiveness of the cell model. Then the cell model was utilized to study the physiological characteristics of LRRC8A, such as the characteristics of anion transport, the opening of LRRC8A by osmotic pressure, the effect of anion transport velocity, and the effect of chloride channel inhibitors on LRRC8A anion channel. The results of the inverted fluorescence microscope showed that LRRC8A was expressed on the cell membrane and YFP-H148Q/I152L was expressed in the cytoplasm. The results of fluorescence quenching kinetic test showed that under the condition of low osmotic state, LRRC8A could transport some kinds of anions, such as iodine and chloride ions. Osmotic pressure played a key role in the regulation of LRRC8A volume-regulated anion channel opening. Chloride channel inhibitors inhibited ion transport of LRRC8A channel in a dose-dependent manner. It is suggested that LRRC8A has the characteristics of classic volume-regulated anion channels by using the cell model of FRT cells co-expressing LRRC8A and YFP-H148Q/I152L.
Animals
;
Anions
;
Cells, Cultured
;
Chloride Channels
;
antagonists & inhibitors
;
Ion Transport
;
Membrane Proteins
;
physiology
;
Microscopy, Fluorescence
;
Rats
;
Rats, Inbred F344
;
Thyroid Gland
;
cytology
;
Transfection