2.Advance in molecular genetic research on generalized epilepsies.
Kailin ZHANG ; Hong JIANG ; Nan LI
Chinese Journal of Medical Genetics 2018;35(6):908-911
Genetic generalized epilepsies (GGEs) are a group of epilepsy syndromes caused by genetic factors. A few of GGEs conform to the Mendelian patterns, while most of them show polygene inheritance. Researchers initially found that most of the genes associated with GGEs are related to ion channels including voltage-gated sodium channels, potassium channels, calcium channels and chloride channels, and ligand-gated gamma-aminobutyric acid receptor channels. Further researches have shown that certain non-ion channel genes are also related to GGEs, and that de novo mutations and copy number variants also play an important role in the pathogenesis of GGEs. Application of next- and third-generation sequencing promoted delineation of the molecular genetics of the GGEs, but also brought more challenges. Genetic findings have provided an important basis for the elucidation of the pathogenesis, clinical diagnosis and precise treatment of GGEs. This paper provided a review for recent progress made in molecular genetics of GGEs.
Epilepsy, Generalized
;
genetics
;
Genetic Research
;
Humans
;
Ion Channels
;
genetics
4.Hereditary stomatocytosis with PIEZO1 gene mutations: report of five cases and literature review.
Yuan LI ; Xin ZHAO ; Jian Ping LI ; Yong Hui XIA ; Yang LI ; Wen Rui YANG ; Lei YE ; Guang Xin PENG ; Xiao Bing HAN ; Yan Hong LI ; Hui Hui FAN ; Lin SONG ; Yang YANG ; Kang ZHOU ; You Zhen XIONG ; Qing Yan GAO ; Zhi Jie WU ; Li Ping JING ; Li ZHANG ; Feng kui ZHANG
Chinese Journal of Hematology 2019;40(6):518-521
5.Ion channelopathies and inherited arrhythmia.
Journal of Zhejiang University. Medical sciences 2010;39(1):97-102
Ion channelopathies are the mainly etiopathogenisis of inherited arrhythmia. Those arrhythmia syndromes are commonly caused by ion channel gene mutation, which can be classified as sodium,potassium and calcium ion channel mutation.Changes in the genes encoding for cardiac ion channel subunits produce modification in the function of the channels, and cause the dysfunctions of cardiac electrical activity; and the clinical manifestation is malignant arrhythmia.
Animals
;
Arrhythmias, Cardiac
;
genetics
;
physiopathology
;
Channelopathies
;
genetics
;
physiopathology
;
Humans
;
Ion Channels
;
genetics
;
physiology
;
Mutation
7.Ion channels and penile erection.
National Journal of Andrology 2004;10(6):403-410
Recently, more and more studies have discovered that some diseases result from gene defect and functional variation of ion channels, which are called ion passage diseases or ion channelopathies. Meanwhile, it has been found that even though many diseases do not fall into the category of the ion passage disease, some links or passages during the disease development are closely related with the malfunction of ion channels, and many drugs can prevent and cure these diseases by acting on ion channels. Therefore, the relationship between physiology/pathophysiology and ion channels is gradually becoming one of the hot topics in the current researches. The recent progress in the researches on the relationship between penile erection and ion channels is briefly reviewed in this article.
Calcium Channels
;
physiology
;
Chloride Channels
;
physiology
;
Connexin 43
;
genetics
;
Erectile Dysfunction
;
etiology
;
Humans
;
Ion Channels
;
physiology
;
Male
;
Penile Erection
;
physiology
;
Potassium Channels
;
physiology
8.Research advances in hereditary epilepsy and precision drug therapy.
Chinese Journal of Contemporary Pediatrics 2017;19(10):1118-1123
Epilepsy is a common nervous system disease. It has been found that the pathogenesis of epilepsy is associated mutations in various genes, including genes encoding voltage-dependent ion channel, genes encoding ligand-gated ion channel, and solute carrier family genes. Different types of epilepsy caused by different mutations have different responses to drugs, and therefore, diagnosis and medication guidance based on genes are new thoughts for developing therapies. With the application of next-generation sequencing technology, more and more genes will be determined, which helps to further study the pathogenic mechanism of mutant genes and provides a basis for precision drug therapy for epilepsy.
Epilepsy
;
drug therapy
;
etiology
;
genetics
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Ion Channels
;
genetics
;
Precision Medicine
9.Research advances in candidate genes for autism spectrum disorder.
Chinese Journal of Contemporary Pediatrics 2016;18(3):282-287
Autism spectrum disorder (ASD) is a kind of neurodevelopmental multigenic disorder. More than one hundred of candidate genes for ASD have been reported. The candidate gene research for ASD involves in chromosome loci and screening of candidate genes and epigenetic abnormalities for candidate genes. The reported genes encode neural adhesion molecules, ion channels, scaffold proteins, protein kinases, receptor protein and carrier protein, signaling modulate molecules and circadian relevant proteins. The research of mutation screening and expression regulation of candidate genes can help to elucidate genetic mechanisms for ASD, and may provide new approaches for the diagnosis and treatment of this disorder. This article reviews the research advance in candidate genes for ASD.
Autism Spectrum Disorder
;
genetics
;
Gene Dosage
;
Genetic Predisposition to Disease
;
Humans
;
Ion Channels
;
genetics
;
Nerve Tissue Proteins
;
genetics
;
Signal Transduction
;
genetics
10.Construction of a prediction model for prognosis of bladder cancer based on the expression of ion channel-related genes.
Dianfeng ZHANG ; Guicao YIN ; Shengqi ZHENG ; Qiu CHEN ; Yifan LI
Journal of Zhejiang University. Medical sciences 2023;52(4):499-509
OBJECTIVES:
To construct a prediction model for the prognosis of bladder cancer patients based on the expression of ion channel-related genes (ICRGs).
METHODS:
ICRGs were obtained from the existing researches. The clinical information and the expression of ICRGs mRNA in breast cancer patients were obtained from the Cancer Genome Atlas database. Cox regression analysis, minimum absolute shrinkage and selection operator regression analysis were used to screen breast cancer prognosis related genes, which were verified by immunohistochemistry and qRT-PCR. The risk scoring equation for predicting the prognosis of patients with bladder cancer was constructed, and the patients were divided into high-risk group and low-risk group according to the median risk score. Immune cell infiltration was compared between the two groups. Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used to evaluate the accuracy and clinical application value of the risk scoring equation. The factors related to the prognosis of bladder cancer patients were analyzed by univariate and multivariate Cox regression, and a nomogram for predicting the prognosis of bladder cancer patients was constructed.
RESULTS:
By comparing the expression levels of ICRGs in bladder cancer tissues and normal bladder tissues, 73 differentially expressed ICRGs were dentified, of which 11 were related to the prognosis of bladder cancer patients. Kaplan-Meier survival curve suggested that the risk score based on these 11 genes was negatively correlated with the prognosis of patients. The area under the ROC curve of the risk score for predicting the prognosis of patients at 1, 3 and 5 year was 0.634, 0.665 and 0.712, respectively. Stratified analysis showed that the ICRGs-based risk score performed well in predicting the prognosis of patients with American Joint Committee on Cancer (AJCC) stage Ⅲ-Ⅳ bladder cancer (P<0.05), while it had a poor value in predicting the prognosis of patients with AJCC stage Ⅰ-Ⅱ (P>0.05). There were significant differences in the infiltration of plasma cells, activated natural killer cells, resting mast cells and M2 macrophages between the high-risk group and the low-risk group. Cox regression analysis showed that risk score, smoking, age and AJCC stage were independently associated with the prognosis of patients with bladder cancer (P<0.05). The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1, 3 and 5 year overall survival rate of bladder cancer patients.
CONCLUSIONS
The study shows the potential value of ICRGs in the prognostic risk assessment of bladder cancer patients. The constructed prognostic nomogram based on ICRGs risk score has high accuracy in predicting the prognosis of bladder cancer patients.
Humans
;
Female
;
Prognosis
;
Urinary Bladder Neoplasms/genetics*
;
Urinary Bladder
;
Ion Channels
;
Breast Neoplasms