1.Progress on structural biology of voltage-gated ion channels.
Journal of Zhejiang University. Medical sciences 2019;48(1):25-33
Ion channels mediate ion transport across membranes, and play vital roles in processes of matter exchange, energy transfer and signal transduction in living organisms. Recently, structural studies of ion channels have greatly advanced our understanding of their ion selectivity and gating mechanisms. Structural studies of voltage-gated potassium channels elucidate the structural basis for potassium selectivity and voltage-gating mechanism; structural studies of voltage-gated sodium channels reveal their slow and fast inactivation mechanisms; and structural studies of transient receptor potential (TRP) channels provide complex and diverse structures of TRP channels, and their ligand gating mechanisms. In the article we summarize recent progress on ion channel structural biology, and outlook the prospect of ion channel structural biology in the future.
Ion Channel Gating
;
physiology
;
Ion Channels
;
Voltage-Gated Sodium Channels
;
chemistry
;
metabolism
2.Voltage Regulation of Connexin Channel Conductance.
Seunghoon OH ; Thaddeus A BARGIELLO
Yonsei Medical Journal 2015;56(1):1-15
Voltage is an important parameter that regulates the conductance of both intercellular and plasma membrane channels (undocked hemichannels) formed by the 21 members of the mammalian connexin gene family. Connexin channels display two forms of voltage-dependence, rectification of ionic currents and voltage-dependent gating. Ionic rectification results either from asymmetries in the distribution of fixed charges due to heterotypic pairing of different hemichannels, or by channel block, arising from differences in the concentrations of divalent cations on opposite sides of the junctional plaque. This rectification likely underpins the electrical rectification observed in some electrical synapses. Both intercellular and undocked hemichannels also display two distinct forms of voltage-dependent gating, termed Vj (fast)-gating and loop (slow)-gating. This review summarizes our current understanding of the molecular determinants and mechanisms underlying these conformational changes derived from experimental, molecular-genetic, structural, and computational approaches.
Animals
;
Connexins/chemistry/*metabolism
;
Humans
;
*Ion Channel Gating
;
Ion Channels/chemistry/*metabolism
;
Molecular Dynamics Simulation
;
Protein Conformation
3.Theoretical and simulation studies on voltage-gated sodium channels.
Protein & Cell 2015;6(6):413-422
Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nav channels in recent years greatly promote the mechanistic investigation of these proteins and their eukaryotic counterparts. In this paper, we mainly review the progress in computational studies, especially the simulation studies, on these proteins in the past years.
Ion Channel Gating
;
Ligands
;
Models, Biological
;
Permeability
;
Substrate Specificity
;
Voltage-Gated Sodium Channels
;
chemistry
;
metabolism
4.The BK channel: a vital link between cellular calcium and electrical signaling.
Protein & Cell 2012;3(12):883-892
Large-conductance Ca²⁺-activated K⁺ channels (BK channels) constitute an key physiological link between cellular Ca²⁺ signaling and electrical signaling at the plasma membrane. Thus these channels are critical to the control of action potential firing and neurotransmitter release in several types of neurons, as well as the dynamic control of smooth muscle tone in resistance arteries, airway, and bladder. Recent advances in our understanding of K⁺ channel structure and function have led to new insight toward the molecular mechanisms of opening and closing (gating) of these channels. Here we will focus on mechanisms of BK channel gating by Ca²⁺, transmembrane voltage, and auxiliary subunit proteins.
Animals
;
Calcium Signaling
;
Cytoplasm
;
metabolism
;
Electric Conductivity
;
Electrophysiological Phenomena
;
Humans
;
Ion Channel Gating
;
Large-Conductance Calcium-Activated Potassium Channels
;
chemistry
;
metabolism
;
Protein Subunits
;
chemistry
;
metabolism
5.A binding-block ion selective mechanism revealed by a Na/K selective channel.
Jie YU ; Bing ZHANG ; Yixiao ZHANG ; Cong-Qiao XU ; Wei ZHUO ; Jingpeng GE ; Jun LI ; Ning GAO ; Yang LI ; Maojun YANG
Protein & Cell 2018;9(7):629-639
Mechanosensitive (MS) channels are extensively studied membrane protein for maintaining intracellular homeostasis through translocating solutes and ions across the membrane, but its mechanisms of channel gating and ion selectivity are largely unknown. Here, we identified the YnaI channel as the Na/K cation-selective MS channel and solved its structure at 3.8 Å by cryo-EM single-particle method. YnaI exhibits low conductance among the family of MS channels in E. coli, and shares a similar overall heptamer structure fold with previously studied MscS channels. By combining structural based mutagenesis, quantum mechanical and electrophysiological characterizations, we revealed that ion selective filter formed by seven hydrophobic methionine (YnaI) in the transmembrane pore determined ion selectivity, and both ion selectivity and gating of YnaI channel were affected by accompanying anions in solution. Further quantum simulation and functional validation support that the distinct binding energies with various anions to YnaI facilitate Na/K pass through, which was defined as binding-block mechanism. Our structural and functional studies provided a new perspective for understanding the mechanism of how MS channels select ions driven by mechanical force.
Cryoelectron Microscopy
;
Escherichia coli Proteins
;
chemistry
;
isolation & purification
;
metabolism
;
ultrastructure
;
Ion Channels
;
chemistry
;
isolation & purification
;
metabolism
;
ultrastructure
;
Mechanotransduction, Cellular
;
Models, Molecular
;
Quantum Theory
6.Uncoupling protein and nonalcoholic fatty liver disease.
Xi JIN ; Zun XIANG ; Yi-peng CHEN ; Kui-fen MA ; Yue-fang YE ; You-ming LI
Chinese Medical Journal 2013;126(16):3151-3155
OBJECTIVETo review the current advances on the role of uncoupling protein (UCP) in the pathogenesis and progress of nonalcoholic fatty liver disease (NAFLD).
DATA SOURCESA comprehensive search of the PubMed literature without restriction on the publication date was carried out using keywords such as UCP and NAFLD.
STUDY SELECTIONArticles containing information related to NAFLD and UCP were selected and carefully analyzed.
RESULTSThe typical concepts, up-to-date findings, and existing controversies of UCP2 in NAFLD were summarized. Besides, the effect of a novel subtype of UCP (hepatocellular down regulated mitochondrial carrier protein, HDMCP) in NAFLD was also analyzed. Finally, the concept that any mitochondrial inner membrane carrier protein may have, more or less, the uncoupling ability was reinforced.
CONCLUSIONSConsidering the importance of NAFLD in clinics and UCP in energy metabolism, we believe that this review may raise research enthusiasm on the effect of UCP in NAFLD and provide a novel mechanism and therapeutic target for NAFLD.
Animals ; Fatty Acids, Nonesterified ; metabolism ; Fatty Liver ; etiology ; metabolism ; Humans ; Ion Channels ; physiology ; Mitochondrial Proteins ; analysis ; chemistry ; physiology ; Non-alcoholic Fatty Liver Disease ; Uncoupling Protein 2
7.Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism.
Sensen ZHANG ; Ningning LI ; Wenwen ZENG ; Ning GAO ; Maojun YANG
Protein & Cell 2017;8(11):834-847
TRPML1 channel is a non-selective group-2 transient receptor potential (TRP) channel with Ca permeability. Located mainly in late endosome and lysosome of all mammalian cell types, TRPML1 is indispensable in the processes of endocytosis, membrane trafficking, and lysosome biogenesis. Mutations of TRPML1 cause a severe lysosomal storage disorder called mucolipidosis type IV (MLIV). In the present study, we determined the cryo-electron microscopy (cryo-EM) structures of Mus musculus TRPML1 (mTRPML1) in lipid nanodiscs and Amphipols. Two distinct states of mTRPML1 in Amphipols are added to the closed state, on which could represent two different confirmations upon activation and regulation. The polycystin-mucolipin domain (PMD) may sense the luminal/extracellular stimuli and undergo a "move upward" motion during endocytosis, thus triggering the overall conformational change in TRPML1. Based on the structural comparisons, we propose TRPML1 is regulated by pH, Ca, and phosphoinositides in a combined manner so as to accommodate the dynamic endocytosis process.
Animals
;
Calcium
;
metabolism
;
Cryoelectron Microscopy
;
Endocytosis
;
Endosomes
;
metabolism
;
Gene Expression
;
HEK293 Cells
;
Humans
;
Hydrogen-Ion Concentration
;
Lysosomes
;
metabolism
;
Mice
;
Models, Biological
;
Mucolipidoses
;
genetics
;
metabolism
;
pathology
;
Nanostructures
;
chemistry
;
ultrastructure
;
Phosphatidylinositols
;
metabolism
;
Transgenes
;
Transient Receptor Potential Channels
;
chemistry
;
genetics
;
metabolism
8.Effects of pH on Vascular Tone in Rabbit Basilar Arteries.
Young Chul KIM ; Sang Jin LEE ; Ki Whan KIM
Journal of Korean Medical Science 2004;19(1):42-50
Effects of pH on vascular tone and L-type Ca2+ channels were investigated using Mulvany myograph and voltage-clamp technique in rabbit basilar arteries. In rabbitbasilar arteries, high K+ produced tonic contractions by 11+/-0.6 mN (mean+/-S.E., n=19). When extracellular pH (pHo) was changed from control 7.4 to 7.9 ([alkalosis]o), K+-induced contraction was increased to 128+/-2.1% of the control (n=13). However, K+-induced contraction was decreased to 73+/-1.3% of the control at pHo 6.8 ([acidosis]o, n=4). Histamine (10 micrometer) also produced tonic contraction by 11+/-0.6 mN (n=17), which was blocked by post-application of nicardipine (1 micrometer). [alkalosis]o and [acidosis]o increased or decreased histamine-induced contraction to 134+/-5.7% and 27+/-7.6% of the control (n=4, 6). Since high K+- and histamine-induced tonic contractions were affected by nicardipine and pHo, the effect of pHo on voltage-dependent L-type Ca2+ channel (VDCCL) was studied. VDCCL was modulated by pHo: the peak value of Ca2+ channel current (IBa) at a holding of 0 mV decreased in [acidosis]o by 41+/-8.8%, whereas that increased in [alkalosis]o by 35+/-2.1% (n=3). These results suggested that the external pH regulates vascular tone partly via the modulation of VDCC in rabbit basilar arteries.
Animals
;
Arteries/*pathology
;
Basilar Artery/*pathology
;
Calcium/metabolism
;
Calcium Channels/chemistry
;
Electrophysiology
;
Histamine/chemistry/metabolism
;
Hydrogen-Ion Concentration
;
Muscle Cells/cytology
;
Muscle Contraction
;
Muscle, Smooth/*pathology
;
Patch-Clamp Techniques
;
Potassium/chemistry/metabolism
;
Rabbits
;
Stress, Mechanical
;
Time Factors
9.Molecular biology of neuronal voltage-gated calcium channels.
Experimental & Molecular Medicine 1998;30(3):123-130
No abstract available.
Animal
;
Calcium Channels/physiology*
;
Calcium Channels/chemistry
;
Gene Expression Regulation
;
Human
;
Ion Channel Gating/physiology*
;
Mice
;
Mutation
;
Nervous System/metabolism
;
Nervous System Diseases/physiopathology
;
Nervous System Diseases/genetics
;
Neurons/physiology*
10.An optimized recording method to characterize biophysical and pharmacological properties of acid-sensing ion channel.
Ai LI ; Wen SI ; Xin-Wu HU ; Chang-Jin LIU ; Xiao-Hua CAO
Neuroscience Bulletin 2008;24(3):160-165
OBJECTIVETo re-confirm and characterize the biophysical and pharmacological properties of endogenously expressed human acid-sensing ion channel 1a (hASIC1a) current in HEK293 cells with a modified perfusion methods.
METHODSWith cell floating method, which is separating the cultured cell from coverslip and putting the cell in front of perfusion tubing, whole cell patch clamp technique was used to record hASIC1a currents evoked by low pH external solution.
RESULTSUsing cell floating method, the amplitude of hASIC1a currents activated by pH 5.0 in HEK293 cells is twice as large as that by the conventional method where the cells remain attached to coverslip. The time to reach peak at two different recording conditions is (21+/-5) ms and (270+/-25) ms, respectively. Inactivation time constants are (496+/-23) ms and (2284+/-120) ms, respectively. The cell floating method significantly increases the amiloride potency of block on hASIC1a [IC50 is (3.4+/-1.1) micromol/L and (2.4+/- 0.9) micromol/L, respectively]. Both recording methods have similar pH activation EC50 (6.6+/-0.6, 6.6+/-0.7, respectively).
CONCLUSIONASICs channel activation requires fast exchange of extracellular solution with the different pH values. With cell floating method, the presence of hASIC1a current was re-confirmed and the biophysical and pharmacological properties of hASIC1a channel in HEK293 cells were precisely characterized. This method could be used to study all ASICs and other ligand-gated channels that require fast extracellular solution exchange.
Acid Sensing Ion Channels ; Amiloride ; pharmacology ; Biophysics ; instrumentation ; methods ; Cell Culture Techniques ; instrumentation ; methods ; Cell Line ; Cell Membrane ; chemistry ; drug effects ; metabolism ; Culture Media ; chemistry ; pharmacology ; Extracellular Fluid ; chemistry ; metabolism ; Humans ; Hydrogen-Ion Concentration ; drug effects ; Membrane Potentials ; drug effects ; physiology ; Nerve Tissue Proteins ; chemistry ; drug effects ; metabolism ; Neuropharmacology ; instrumentation ; methods ; Patch-Clamp Techniques ; instrumentation ; methods ; Perfusion ; instrumentation ; methods ; Sodium Channel Blockers ; pharmacology ; Sodium Channels ; chemistry ; drug effects ; metabolism ; Time Factors