1.Complex structures and diverse functions of nuclear bodies: a review.
Xinyuan LIU ; Lian-Feng LI ; Hua-Ji QIU
Chinese Journal of Biotechnology 2021;37(7):2223-2231
Nuclear bodies are membrane-free nuclear substructures that are localized in the mammalian nuclear matrix region. They are multiprotein complexes that recruit other proteins to participate in various cellular activities, such as transcription, RNA splicing, epigenetic regulation, tumorigenesis and antiviral defense. It is of great significance to clarify the functions and regulatory mechanisms of nuclear bodies to probe related diseases and virus-host interactions. This review takes several nuclear bodies associated proteins as examples, summarizes the formation process, structure and functions of nuclear bodies, and focuses on their important roles in antiviral infection. It is expected to provide new insight into host antiviral mechanisms.
Animals
;
Cell Nucleus
;
Epigenesis, Genetic
;
Intranuclear Inclusion Bodies/metabolism*
;
Nuclear Proteins/metabolism*
2.The potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1.
Shuai WANG ; Jing LONG ; Chun-fu ZHENG
Protein & Cell 2012;3(5):372-382
Herpes simplex virus type 1 (HSV-1) is a common human pathogen causing cold sores and even more serious diseases. It can establish a latent stage in sensory ganglia after primary epithelial infections, and reactivate in response to stress or sunlight. Previous studies have demonstrated that viral immediate-early protein ICP0 plays a key role in regulating the balance between lytic and latent infection. Recently, It has been determined that promyelocytic leukemia (PML) nuclear bodies (NBs), small nuclear sub-structures, contribute to the repression of HSV-1 infection in the absence of functional ICP0. In this review, we discuss the fundamentals of the interaction between ICP0 and PML NBs, suggesting a potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1.
Herpes Simplex
;
virology
;
Herpesvirus 1, Human
;
genetics
;
physiology
;
Humans
;
Immediate-Early Proteins
;
metabolism
;
Intranuclear Inclusion Bodies
;
metabolism
;
virology
;
Leukemia, Promyelocytic, Acute
;
metabolism
;
Ubiquitin-Protein Ligases
;
metabolism
;
Virus Latency
;
physiology
3.E2FBP1 antagonizes the p16(INK4A)-Rb tumor suppressor machinery for growth suppression and cellular senescence by regulating promyelocytic leukemia protein stability.
Yayoi FUKUYO ; Akiko TAKAHASHI ; Eiji HARA ; Nobuo HORIKOSHI ; Tej K PANDITA ; Takuma NAKAJIMA
International Journal of Oral Science 2011;3(4):200-208
Cellular senescence is an irreversible cell cycle arrest triggered by the activation of oncogenes or mitogenic signaling as well as the enforced expression of tumor suppressors such as p53, p16(INK4A) and promyelocytic leukemia protein (PML) in normal cells. E2F-binding protein 1 (E2FBP1), a transcription regulator for E2F, induces PML reduction and suppresses the formation of PML-nuclear bodies, whereas the down-regulation of E2FBP1 provokes the PML-dependent premature senescence in human normal fibroblasts. Here we report that the depletion of E2FBP1 induces the accumulation of PML through the Ras-dependent activation of MAP kinase signaling. The cellular levels of p16(INK4A) and p53 are elevated during premature senescence induced by depletion of E2FBP1, and the depletion of p16(INK4A), but not p53 rescued senescent cells from growth arrest. Therefore, the premature senescence induced by E2FBP1 depletion is achieved through the p16(INK4A)-Rb pathway. Similar to human normal fibroblasts, the growth inhibition induced by E2FBP1 depletion is also observed in human tumor cells with intact p16(INK4A) and Rb. These results suggest that E2FBP1 functions as a critical antagonist to the p16(INK4A)-Rb tumor suppressor machinery by regulating PML stability.
Cell Line, Tumor
;
Cells, Cultured
;
Cellular Senescence
;
genetics
;
physiology
;
Cyclin-Dependent Kinase Inhibitor p16
;
antagonists & inhibitors
;
genetics
;
physiology
;
DNA-Binding Proteins
;
deficiency
;
genetics
;
physiology
;
Down-Regulation
;
Fibroblasts
;
Gene Expression Regulation
;
Humans
;
Intranuclear Inclusion Bodies
;
metabolism
;
MAP Kinase Signaling System
;
Nuclear Proteins
;
genetics
;
metabolism
;
physiology
;
Promyelocytic Leukemia Protein
;
Protein Isoforms
;
Protein Stability
;
RNA Interference
;
Retinoblastoma Protein
;
antagonists & inhibitors
;
genetics
;
physiology
;
Transcription Factors
;
deficiency
;
genetics
;
metabolism
;
physiology
;
Transfection
;
Tumor Suppressor Protein p53
;
physiology
;
Tumor Suppressor Proteins
;
genetics
;
metabolism
;
physiology
;
Ubiquitination
;
ras Proteins
;
metabolism