1.Expression regulation and function of NLRC5.
Protein & Cell 2013;4(3):168-175
The NOD like receptors (NLRs), a class of intracellular receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. While NLRC5 is constitutively and widely expressed, it can be dramatically induced by interferons during pathogen infections. Both in vitro and in vivo studies have demonstrated that NLRC5 is a specific and master regulator of major mistocompatibility complex (MHC) class I genes as well as related genes involved in MHC class I antigen presentation. The expression of MHC class I genes is regulated by NLRC5 in coordination with the RFX components through an enhanceosome-dependent manner. And the involvement of NLRC5 in MHC class I mediated CD8+ T cell activation, proliferation and cytotoxicity is proved to be critical for host defense against intracellular bacterial infections. Nevertheless, the role of NLRC5 in innate immunity remains to be further explored. Here, we review the research advances on the structure, expression regulation and function of NLRC5.
Animals
;
CD8-Positive T-Lymphocytes
;
immunology
;
metabolism
;
Histocompatibility Antigens Class I
;
genetics
;
metabolism
;
Humans
;
Immunity, Innate
;
Intracellular Signaling Peptides and Proteins
;
chemistry
;
genetics
;
metabolism
2.Expression and significance of Ser10 phosphorylated p27(kip1) and JAB1 protein in human hepatocellular carcinoma.
Mu-Dan LU ; You WANG ; Li CHEN ; Jun QIN ; Peng LI ; Xiao-Peng CUI ; Ai-Guo SHEN
Chinese Journal of Pathology 2007;36(12):840-841
COP9 Signalosome Complex
;
Carcinoma, Hepatocellular
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p27
;
chemistry
;
genetics
;
metabolism
;
Electrophoresis, Polyacrylamide Gel
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
chemistry
;
genetics
;
metabolism
;
Peptide Hydrolases
;
chemistry
;
genetics
;
metabolism
;
Phosphorylation
;
Phosphoserine
;
metabolism
3.Construction of a eukaryotic expression plasmid of Humanin.
Ben-yan LUO ; Xiang-ming CHEN ; Min TANG ; Feng CHEN ; Zhi CHEN
Journal of Zhejiang University. Science. B 2005;6(1):11-13
OBJECTIVETo construct a eukaryotic expression plasmid pcDNA3.1(-)-Humanin.
METHODSThe recombinant plasmid pGEMEX-1-Humanin was digested with restriction endonucleases BamH I and Hind III and the Humanin gene fragments, about 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1(-) and the recombinant plasmids pcDNA3.1(-)-Humanin were identified by sequencing.
RESULTSRecombinant plasmid DNA successfully produced a band which had the same size as that of the Humanin positive control. The sequence of recombinant plasmids accorded with the Humnain gene sequence.
CONCLUSIONSA eukaryotic expression plasmid of Humanin was successfully constructed.
Base Sequence ; Cloning, Molecular ; methods ; Escherichia coli ; genetics ; metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; Molecular Sequence Data ; Molecular Weight ; Plasmids ; genetics ; Protein Engineering ; methods ; Proteins ; chemistry ; genetics ; metabolism ; Recombinant Proteins ; biosynthesis ; chemistry
4.Polyubiquitin chain-dependent protein degradation in TRIM30 cytoplasmic bodies.
Un Yung CHOI ; Won Young CHOI ; Ji Yeon HUR ; Young Joon KIM
Experimental & Molecular Medicine 2015;47(4):e159-
Viral infection induces numerous tripartite motif (TRIM) proteins to control antiviral immune signaling and viral replication. Particularly, SPRY-containing TRIM proteins are found only in vertebrates and they control target protein degradation by their RING-finger and SPRY domains, and proper cytoplasmic localization. To understand TRIM30 function, we analyzed its localization pattern and putative roles of its RING-finger and SPRY domains. We found that TRIM30 is located in actin-mediated cytoplasmic bodies and produces colocalized ubiquitin chains in SPRY domain- and RING-finger domain-dependent ways that are degraded by autophagy and the proteasome. These results suggest a TRIM protein-dependent degradation mechanism by cytoplasmic body formation with actin networks.
Amino Acid Sequence
;
Animals
;
Autophagy
;
Cell Line
;
Inclusion Bodies/*metabolism
;
Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism
;
Mice
;
Molecular Sequence Data
;
Polyubiquitin/*metabolism
;
Proteasome Endopeptidase Complex/metabolism
;
Protein Interaction Domains and Motifs
;
Protein Transport
;
Proteolysis
;
RING Finger Domains
5.ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression.
Yuangang ZHU ; Chunyan WANG ; Mei YU ; Jie CUI ; Liang LIU ; Zhiheng XU
Protein & Cell 2013;4(9):711-721
Mutations in LR RK2 (Leucine rich repeat kinase 2) are a major cause of Parkinson's disease (PD). We and others reported recently that expression of the pathogenic gainof-function mutant form of LRRK2, LRRK2 G2019S, induces mitochondrial fission in neurons through DLP1. Here we provide evidence that expression of LRRK2 G2019S stimulates mitochondria loss or mitophagy. We have characterized several LRRK2 interacting proteins and found that LRRK2 interacts with ULK1 which plays an essential role in autophagy. Knockdown of either ULK1 or DLP1 expression with shRNAs suppresses LRRK2 G2019S expression-induced mitochondrial clearance, suggesting that LRRK2 G2019S expression induces mitochondrial fission through DLP1 followed by mitophagy via an ULK1 dependent pathway. In addition to ULK1, we found that LRRK2 interacts with the endogenous MKK4/7, JIP3 and coordinates with them in the activation of JNK signaling. Interestingly, LRRK2 G2019S-induced loss of mitochondria can also be suppressed by 3 different JNK inhibitors, implying the involvement of the JNK pathway in the pathogenic mechanism of mutated LRRK2. Thus our findings may provide an insight into the complicated pathogenesis of PD as well as some clues to the development of novel therapeutic strategies.
Amino Acid Substitution
;
Autophagosomes
;
metabolism
;
pathology
;
Autophagy-Related Protein-1 Homolog
;
chemistry
;
genetics
;
metabolism
;
GTP Phosphohydrolases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Gene Knockdown Techniques
;
HeLa Cells
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
chemistry
;
genetics
;
metabolism
;
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
;
chemistry
;
genetics
;
metabolism
;
MAP Kinase Signaling System
;
Microtubule-Associated Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Mitochondrial Degradation
;
genetics
;
physiology
;
Mitochondrial Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Mutant Proteins
;
chemistry
;
genetics
;
metabolism
;
Mutation
;
Parkinson Disease
;
genetics
;
metabolism
;
pathology
;
Protein Interaction Domains and Motifs
;
Recombinant Proteins
;
chemistry
;
genetics
;
metabolism
6.Updates on biologic function of tumor suppressor gene inhibitor of growth family and related studies.
Chinese Journal of Pathology 2009;38(12):859-861
Animals
;
Apoptosis
;
Cell Cycle
;
Cell Cycle Proteins
;
genetics
;
metabolism
;
physiology
;
DNA Repair
;
Homeodomain Proteins
;
genetics
;
metabolism
;
physiology
;
Humans
;
Inhibitor of Growth Protein 1
;
Intracellular Signaling Peptides and Proteins
;
genetics
;
metabolism
;
physiology
;
Neoplasm Metastasis
;
Neoplasms
;
metabolism
;
pathology
;
Neovascularization, Pathologic
;
pathology
;
Nuclear Proteins
;
genetics
;
metabolism
;
physiology
;
Prognosis
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
physiology
;
Signal Transduction
;
Transcription Factors
;
genetics
;
metabolism
;
physiology
;
Tumor Suppressor Protein p53
;
metabolism
;
Tumor Suppressor Proteins
;
chemistry
;
genetics
;
metabolism
;
physiology
7.Effects of tea polyphenols and tea pigments on cell cycle regulators in rat liver precancerous lesions.
Xudong JIA ; Chi HAN ; Junshi CHEN
Chinese Journal of Preventive Medicine 2002;36(4):225-228
OBJECTIVESThis study is to investigate the effects of tea polyphenols and tea pigments on cell cycle regulators in rat liver precancerous lesions.
METHODSThe modified Solt-Farber precancerous liver rat model was used. Rats were given water, tea polypheol solution (0.1%) or tea pigment solution (0.1%) throughout the whole experiment (56 days). Cyclin D1, P21(WAF1/CIP1), GADD45 and PCNA protein expression were detected by Western blotting and the RT-PCR method was applied to study the expression of Cdk4.
RESULTSCyclin D1, Cdk4 and PCNA expressions were significantly inhibited, and the expression of P21(WAF1/CIP1) and GADD45 were significantly induced by tea polyphenols and tea pigments treatments.
CONCLUSIONTea polyphenols and tea pigments induced cell cycle arrest and inhibited cell proliferation by regulating cell cycle regulators.
Animals ; Blotting, Western ; Cell Cycle Proteins ; drug effects ; genetics ; metabolism ; Cyclin D1 ; drug effects ; metabolism ; Cyclin-Dependent Kinase 4 ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclin-Dependent Kinases ; genetics ; Cyclins ; drug effects ; metabolism ; Flavonoids ; Intracellular Signaling Peptides and Proteins ; Liver Neoplasms ; genetics ; metabolism ; pathology ; Male ; Phenols ; pharmacology ; Pigments, Biological ; pharmacology ; Polymers ; pharmacology ; Polyphenols ; Precancerous Conditions ; genetics ; metabolism ; pathology ; Proliferating Cell Nuclear Antigen ; drug effects ; metabolism ; Proteins ; Proto-Oncogene Proteins ; RNA, Messenger ; drug effects ; genetics ; metabolism ; Rats ; Rats, Wistar ; Reverse Transcriptase Polymerase Chain Reaction ; Tea ; chemistry
8.Crystal structure of human Gadd45γ corrected reveals an active dimer.
Wenzheng ZHANG ; Sheng FU ; Xuefeng LIU ; Xuelian ZHAO ; Wenchi ZHANG ; Wei PENG ; Congying WU ; Yuanyuan LI ; Xuemei LI ; Mark BARTLAM ; Zong-Hao ZENG ; Qimin ZHAN ; Zihe RAO
Protein & Cell 2011;2(10):814-826
The human Gadd45 protein family plays critical roles in DNA repair, negative growth control, genomic stability, cell cycle checkpoints and apoptosis. Here we report the crystal structure of human Gadd45γ [corrected], revealing a unique dimer formed via a bundle of four parallel helices, involving the most conserved residues among the Gadd45 isoforms. Mutational analysis of human Gadd45γ [corrected] identified a conserved, highly acidic patch in the central region of the dimer for interaction with the proliferating cell nuclear antigen (PCNA), p21 and cdc2, suggesting that the parallel dimer is the active form for the interaction. Cellular assays indicate that: (1) dimerization of Gadd45γ [corrected] is necessary for apoptosis as well as growth inhibition, and that cell growth inhibition is caused by both cell cycle arrest and apoptosis; (2) a conserved and highly acidic patch on the dimer surface, including the important residues Glu87 and Asp89, is a putative interface for binding proteins related to the cell cycle, DNA repair and apoptosis. These results reveal the mechanism of self-association by Gadd45 proteins and the importance of this self-association for their biological function.
Amino Acid Motifs
;
Animals
;
Apoptosis
;
radiation effects
;
CDC2 Protein Kinase
;
Cell Cycle
;
Cell Survival
;
Crystallography, X-Ray
;
Cyclin B
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
metabolism
;
Cyclin-Dependent Kinases
;
HeLa Cells
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
chemistry
;
genetics
;
metabolism
;
Mice
;
Mutagenesis, Site-Directed
;
Mutation, Missense
;
Proliferating Cell Nuclear Antigen
;
metabolism
;
Protein Binding
;
Protein Interaction Domains and Motifs
;
Protein Multimerization
;
Protein Structure, Quaternary
;
Ultraviolet Rays
9.Effects of multi-glycoside of Tripterygium wilfordii Hook. f. on proteinuria and expression of slit diaphragm-associated molecules in rats with anti-thy1.1 glomerulonephritis.
Yi-Gang WAN ; Wei SUN ; Yang WANG
Chinese Journal of Integrated Traditional and Western Medicine 2006;26(12):1094-1102
OBJECTIVETo examine the effect of multi-glycoside of Tripterygium wilfordii Hook. f. (GTW) on proteinuria and expression of slit diaphragm-associated molecules such as nephrin and podocin in glomerulonephritis induced by anti-Thy1.1 antibody (anti-Thy1 . 1 GN).
METHODSAnti-Thy1.1 GN was induced in rats by a single intravenous injection with 500 microg of anti-Thy1.1 mAb 1-22-3. Fourteen rats were randomly divided into 2 groups, the GTW-treated group and vehicle treated group, and sacrificed on day 14 in Experiment 1 or on day 7 in Experiment 2 after induction of Anti-Thy1.1 GN. Daily oral administration of GTW and vehicle as a control was started from 3 days before injection or at the same time of injection to the day of sacrifice in Experiment 1 or 2. Proteinuria was determined during 14 days in Experiment 1 or during 7 days in Experiment 2. From kidneys taken at sacrifice, glomerular morphological changes, glomerular macrophage infiltration, glomerular expression of nephrin and podocin, and its mRNA expression in renal tissue were examined.
RESULTSIn Experiment 1, proteinuria and mesangial matrix expansion were significantly attenuated by GTW treatment. No difference in staining intensity of nephrin and podocin in glomeruli was observed between GTW treated group and vehicle treated group on day 14. In Experiment 2, GTW treatment significantly ameliorated proteinuria, mesangial injury and activated macrophage infiltration in glomerulus. In addition, it significantly increased the expression of nephrin and podocin and its mRNA expression in glomeruli on day 7.
CONCLUSIONIn anti-Thy1.1 GN, the reduced expression of nephrin and podocin may contribute to the development of mesangial injury and proteinuria. The findings suggest that GTW ameliorates not only proteinuria but also mesangial lesions in anti-Thy1 . 1 GN most likely by increasing the expression of nephrin and podocin.
Animals ; Female ; Fluorescent Antibody Technique ; Glomerulonephritis, Membranoproliferative ; drug therapy ; immunology ; Glycosides ; therapeutic use ; Intracellular Signaling Peptides and Proteins ; genetics ; Isoantibodies ; immunology ; Membrane Proteins ; biosynthesis ; genetics ; Phytotherapy ; Podocytes ; drug effects ; metabolism ; pathology ; Proteinuria ; drug therapy ; Rats ; Reverse Transcriptase Polymerase Chain Reaction ; Thy-1 Antigens ; immunology ; Tripterygium ; chemistry