1.Role of saliva proteinase 3 in dental caries.
Teng-Yu YANG ; Wen-Jie ZHOU ; Yue DU ; Song-Tao WU ; Wen-Wen YUAN ; Yu YU ; Lin SU ; Yang LUO ; Jie-Hua ZHANG ; Wan-Lu LU ; Xiao-Qian WANG ; Jiao CHEN ; Yun FENG ; Xue-Dong ZHOU ; Ping ZHANG
International Journal of Oral Science 2015;7(3):174-178
Salivary analysis can be used to assess the severity of caries. Of the known salivary proteins, a paucity of information exists concerning the role of proteinase 3 (PR3), a serine protease of the chymotrypsin family, in dental caries. Whole, unstimulated saliva was collected from children with varying degrees of active caries and tested using a Human Protease Array Kit and an enzyme-linked immunosorbent assay. A significantly decreased concentration of salivary PR3 was noted with increasing severity of dental caries (P<0.01); a positive correlation (r=0.87; P<0.01; Pearson's correlation analysis) was also observed between salivary pH and PR3 concentration. In an antibacterial test, a PR3 concentration of 250 ng·mL⁻¹ or higher significantly inhibited Streptococcus mutans UA159 growth after 12 h of incubation (P<0.05). These studies indicate that PR3 is a salivary factor associated with the severity of dental caries, as suggested by the negative relationship between salivary PR3 concentration and the severity of caries as well as the susceptibility of S. mutans to PR3.
Child
;
Dental Caries
;
enzymology
;
Female
;
Humans
;
Male
;
Myeloblastin
;
metabolism
;
Saliva
;
enzymology
2.Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro.
Bingran ZHAO ; ; Minie RUSTEMA-ABBING ; Henk J BUSSCHER ; Yijin REN
International Journal of Oral Science 2015;7(4):250-258
Sub-gingival anaerobic pathogens can colonize an implant surface to compromise osseointegration of dental implants once the soft tissue seal around the neck of an implant is broken. In vitro evaluations of implant materials are usually done in monoculture studies involving either tissue integration or bacterial colonization. Co-culture models, in which tissue cells and bacteria battle simultaneously for estate on an implant surface, have been demonstrated to provide a better in vitro mimic of the clinical situation. Here we aim to compare the surface coverage by U2OS osteoblasts cells prior to and after challenge by two anaerobic sub-gingival pathogens in a co-culture model on differently modified titanium (Ti), titanium-zirconium (TiZr) alloys and zirconia surfaces. Monoculture studies with either U2OS osteoblasts or bacteria were also carried out and indicated significant differences in biofilm formation between the implant materials, but interactions with U2OS osteoblasts were favourable on all materials. Adhering U2OS osteoblasts cells, however, were significantly more displaced from differently modified Ti surfaces by challenging sub-gingival pathogens than from TiZr alloys and zirconia variants. Combined with previous work employing a co-culture model consisting of human gingival fibroblasts and supra-gingival oral bacteria, results point to a different material selection to stimulate the formation of a soft tissue seal as compared to preservation of osseointegration under the unsterile conditions of the oral cavity.
Acid Etching, Dental
;
methods
;
Alloys
;
chemistry
;
Bacterial Adhesion
;
physiology
;
Bacteriological Techniques
;
Biofilms
;
Cell Adhesion
;
physiology
;
Cell Culture Techniques
;
Cell Line, Tumor
;
Cell Movement
;
physiology
;
Ceramics
;
chemistry
;
Coculture Techniques
;
Dental Alloys
;
chemistry
;
Dental Etching
;
methods
;
Dental Implants
;
microbiology
;
Dental Materials
;
chemistry
;
Dental Polishing
;
methods
;
Humans
;
Osseointegration
;
physiology
;
Osteoblasts
;
physiology
;
Porphyromonas gingivalis
;
physiology
;
Prevotella intermedia
;
physiology
;
Surface Properties
;
Titanium
;
chemistry
;
Yttrium
;
chemistry
;
Zirconium
;
chemistry
3.Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss.
Ujjal K BHAWAL ; Hye-Jin LEE ; Kazumune ARIKAWA ; Michiharu SHIMOSAKA ; Masatoshi SUZUKI ; Toshizo TOYAMA ; Takenori SATO ; Ryota KAWAMATA ; Chieko TAGUCHI ; Nobushiro HAMADA ; Ikuo NASU ; Hirohisa ARAKAWA ; Koh SHIBUTANI
International Journal of Oral Science 2015;7(4):242-249
Osteoclasts are bone-specific multinucleated cells generated by the differentiation of monocyte/macrophage lineage precursors. Regulation of osteoclast differentiation is considered an effective therapeutic approach to the treatment of bone-lytic diseases. Periodontitis is an inflammatory disease characterized by extensive bone resorption. In this study, we investigated the effects of sodium fluoride (NaF) on osteoclastogenesis induced by Porphyromonas gingivalis, an important colonizer of the oral cavity that has been implicated in periodontitis. NaF strongly inhibited the P. gingivalis-induced alveolar bone loss. That effect was accompanied by decreased levels of cathepsin K, interleukin (IL)-1β, matrix metalloproteinase 9 (MMP9), and tartrate-resistant acid phosphatase, which were up-regulated during P. gingivalis-induced osteoclastogenesis. Consistent with the in vivo anti-osteoclastogenic effect, NaF inhibited osteoclast formation caused by the differentiation factor RANKL (receptor activator of nuclear factor κB ligand) and macrophage colony-stimulating factor (M-CSF). The RANKL-stimulated induction of the transcription factor nuclear factor of activated T cells (NFAT) c1 was also abrogated by NaF. Taken together, our data demonstrate that NaF inhibits RANKL-induced osteoclastogenesis by reducing the induction of NFATc1, ultimately leading to the suppressed expression of cathepsin K and MMP9. The in vivo effect of NaF on the inhibition of P. gingivalis-induced osteoclastogenesis strengthens the potential usefulness of NaF for treating periodontal diseases.
Acid Phosphatase
;
drug effects
;
Alveolar Bone Loss
;
microbiology
;
prevention & control
;
Animals
;
Anti-Bacterial Agents
;
therapeutic use
;
Anti-Inflammatory Agents
;
therapeutic use
;
Bacteroidaceae Infections
;
microbiology
;
prevention & control
;
Bone Density Conservation Agents
;
therapeutic use
;
Cathepsin K
;
drug effects
;
Interleukin-1beta
;
drug effects
;
Interleukin-6
;
analysis
;
Interleukin-8
;
drug effects
;
Isoenzymes
;
drug effects
;
Macrophage Colony-Stimulating Factor
;
drug effects
;
Male
;
Matrix Metalloproteinase 9
;
drug effects
;
Osteoclasts
;
drug effects
;
Periodontitis
;
microbiology
;
prevention & control
;
Porphyromonas gingivalis
;
drug effects
;
RANK Ligand
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Fluoride
;
therapeutic use
;
Tartrate-Resistant Acid Phosphatase
;
Transcription Factors
;
drug effects
;
X-Ray Microtomography
;
methods
4.Expression analysis of α-smooth muscle actin and tenascin-C in the periodontal ligament under orthodontic loading or in vitro culture.
Hui XU ; Ding BAI ; L-Bruno RUEST ; Jian Q FENG ; Yong-Wen GUO ; Ye TIAN ; Yan JING ; Yao HE ; Xiang-Long HAN
International Journal of Oral Science 2015;7(4):232-241
α-smooth muscle actin (α-SMA) and tenascin-C are stress-induced phenotypic features of myofibroblasts. The expression levels of these two proteins closely correlate with the extracellular mechanical microenvironment. We investigated how the expression of α-SMA and tenascin-C was altered in the periodontal ligament (PDL) under orthodontic loading to indirectly reveal the intrinsic mechanical microenvironment in the PDL. In this study, we demonstrated the synergistic effects of transforming growth factor-β1 (TGF-β1) and mechanical tensile or compressive stress on myofibroblast differentiation from human periodontal ligament cells (hPDLCs). The hPDLCs under higher tensile or compressive stress significantly increased their levels of α-SMA and tenascin-C compared with those under lower tensile or compressive stress. A similar trend was observed in the tension and compression areas of the PDL under continuous light or heavy orthodontic load in rats. During the time-course analysis of expression, we observed that an increase in α-SMA levels was matched by an increase in tenascin-C levels in the PDL under orthodontic load in vivo. The time-dependent variation of α-SMA and tenascin-C expression in the PDL may indicate the time-dependent variation of intrinsic stress under constant extrinsic loading.
Actins
;
analysis
;
drug effects
;
Adult
;
Animals
;
Biomechanical Phenomena
;
Cell Culture Techniques
;
Cell Differentiation
;
physiology
;
Cells, Cultured
;
Cellular Microenvironment
;
physiology
;
Humans
;
Male
;
Myofibroblasts
;
physiology
;
Orthodontic Wires
;
Periodontal Ligament
;
chemistry
;
cytology
;
Pressure
;
Rats
;
Rats, Sprague-Dawley
;
Stress, Mechanical
;
Tenascin
;
analysis
;
drug effects
;
Time Factors
;
Tooth Movement Techniques
;
instrumentation
;
Transforming Growth Factor beta1
;
pharmacology
5.The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases.
Jing XIE ; Na FU ; Lin-Yi CAI ; Tao GONG ; Guo LI ; Qiang PENG ; Xiao-Xiao CAI
International Journal of Oral Science 2015;7(4):220-231
Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1β restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage.
3T3 Cells
;
Animals
;
Cartilage, Articular
;
cytology
;
Cell Survival
;
physiology
;
Cells, Cultured
;
Chondrocytes
;
drug effects
;
enzymology
;
Coculture Techniques
;
Culture Media, Conditioned
;
Gelatinases
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
MAP Kinase Signaling System
;
physiology
;
Matrix Metalloproteinase 2
;
drug effects
;
Matrix Metalloproteinase 9
;
drug effects
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
drug effects
;
Monocytes
;
cytology
;
NF-kappa B
;
antagonists & inhibitors
;
Osteoclasts
;
physiology
;
Protease Inhibitors
;
analysis
;
Tissue Inhibitor of Metalloproteinase-1
;
drug effects
;
Tissue Inhibitor of Metalloproteinase-2
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
6.Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers.
Ruth ALVAREZ ; Hye-Lim LEE ; Cun-Yu WANG ; Christine HONG
International Journal of Oral Science 2015;7(4):213-219
Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations: CD51/CD140α, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24% of PDLCs were CD51(+)/CD140α(+), 0.8% were CD271(+), and 2.4% were STRO-1(+)/CD146(+). Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD271(+) DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine.
Adaptor Proteins, Signal Transducing
;
analysis
;
Adult
;
Aggrecans
;
analysis
;
Antigens, CD
;
analysis
;
Antigens, Surface
;
analysis
;
CD146 Antigen
;
analysis
;
Cell Differentiation
;
physiology
;
Cell Lineage
;
Cell Separation
;
methods
;
Cells, Cultured
;
Chondrogenesis
;
physiology
;
Collagen Type II
;
analysis
;
Core Binding Factor Alpha 1 Subunit
;
analysis
;
Flow Cytometry
;
methods
;
Homeodomain Proteins
;
analysis
;
Humans
;
Integrin alphaV
;
analysis
;
Mesenchymal Stromal Cells
;
cytology
;
physiology
;
Multipotent Stem Cells
;
cytology
;
physiology
;
Nerve Tissue Proteins
;
analysis
;
Osteogenesis
;
physiology
;
Periodontal Ligament
;
cytology
;
Receptor, Platelet-Derived Growth Factor alpha
;
analysis
;
Receptors, Nerve Growth Factor
;
analysis
;
SOX9 Transcription Factor
;
analysis
;
Time Factors
;
Transcription Factors
;
analysis
7.Single CD271 marker isolates mesenchymal stem cells from human dental pulp.
Ruth ALVAREZ ; Hye-Lim LEE ; Christine HONG ; Cun-Yu WANG
International Journal of Oral Science 2015;7(4):205-212
Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their capacity to differentiate into multiple lineages. In addition to MSCs isolated from bone marrow (BMSCs), adult MSCs are isolated from craniofacial tissues including dental pulp tissues (DPs) using various stem cell surface markers. However, there has been a lack of consensus on a set of surface makers that are reproducibly effective at isolating putative multipotent dental mesenchymal stem cells (DMSCs). In this study, we used different combinations of surface markers (CD51/CD140α, CD271, and STRO-1/CD146) to isolate homogeneous populations of DMSCs from heterogeneous dental pulp cells (DPCs) obtained from DP and compared their capacity to undergo multilineage differentiation. Fluorescence-activated cell sorting revealed that 27.3% of DPCs were CD51(+)/CD140α(+), 10.6% were CD271(+), and 0.3% were STRO-1(+)/CD146(+). Under odontogenic conditions, all three subsets of isolated DMSCs exhibited differentiation capacity into odontogenic lineages. Among these isolated subsets of DMSCs, CD271(+) DMSCs demonstrated the greatest odontogenic potential. While all three combinations of surface markers in this study successfully isolated DMSCs from DPCs, the single CD271 marker presents the most effective stem cell surface marker for identification of DMSCs with high odontogenic potential. Isolated CD271(+) DMSCs could potentially be utilized for future clinical applications in dentistry and regenerative medicine.
Adult
;
Adult Stem Cells
;
cytology
;
Antigens, CD
;
analysis
;
Antigens, Surface
;
analysis
;
Biomarkers
;
analysis
;
CD146 Antigen
;
analysis
;
Cell Culture Techniques
;
Cell Differentiation
;
physiology
;
Cell Lineage
;
Cell Separation
;
methods
;
Cells, Cultured
;
Chondrogenesis
;
physiology
;
Dental Pulp
;
cytology
;
Flow Cytometry
;
methods
;
Humans
;
Integrin alphaV
;
analysis
;
Mesenchymal Stromal Cells
;
cytology
;
Multipotent Stem Cells
;
cytology
;
Nerve Tissue Proteins
;
analysis
;
Odontogenesis
;
physiology
;
Receptor, Platelet-Derived Growth Factor alpha
;
analysis
;
Receptors, Nerve Growth Factor
;
analysis
8.Histone methyltransferases and demethylases: regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells.
Peng DENG ; Qian-Ming CHEN ; Christine HONG ; Cun-Yu WANG
International Journal of Oral Science 2015;7(4):197-204
Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containing KMTs and JmjC domain-containing KDMs balance the osteogenic and adipogenic differentiation of MSCs.
Adipogenesis
;
genetics
;
physiology
;
Cell Differentiation
;
genetics
;
physiology
;
Cell Lineage
;
genetics
;
Epigenesis, Genetic
;
genetics
;
F-Box Proteins
;
genetics
;
physiology
;
Histone Demethylases
;
genetics
;
physiology
;
Histone-Lysine N-Methyltransferase
;
genetics
;
physiology
;
Humans
;
Jumonji Domain-Containing Histone Demethylases
;
genetics
;
physiology
;
Mesenchymal Stromal Cells
;
enzymology
;
physiology
;
Methyltransferases
;
genetics
;
physiology
;
Osteogenesis
;
genetics
;
physiology
9.PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells.
Emi INADA ; Issei SAITOH ; Satoshi WATANABE ; Reiji AOKI ; Hiromi MIURA ; Masato OHTSUKA ; Tomoya MURAKAMI ; Tadashi SAWAMI ; Youichi YAMASAKI ; Masahiro SATO
International Journal of Oral Science 2015;7(3):144-154
The ability of human deciduous tooth dental pulp cells (HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medicine. Realization of this potential depends on efficient and optimized protocols for the genetic manipulation of HDDPCs. In this study, we demonstrate the use of a PiggyBac (PB)-based gene transfer system as a method for introducing nonviral transposon DNA into HDDPCs and HDDPC-derived inducible pluripotent stem cells. The transfection efficiency of the PB-based system was significantly greater than previously reported for electroporation-based transfection of plasmid DNA. Using the neomycin resistance gene as a selection marker, HDDPCs were stably transfected at a rate nearly 40-fold higher than that achieved using conventional methods. Using this system, it was also possible to introduce two constructs simultaneously into a single cell. The resulting stable transfectants, expressing tdTomato and enhanced green fluorescent protein, exhibited both red and green fluorescence. The established cell line did not lose the acquired phenotype over three months of culture. Based on our results, we concluded that PB is superior to currently available methods for introducing plasmid DNA into HDDPCs. There may be significant challenges in the direct clinical application of this method for human dental tissue engineering due to safety risks and ethical concerns. However, the high level of transfection achieved with PB may have significant advantages in basic scientific research for dental tissue engineering applications, such as functional studies of genes and proteins. Furthermore, it is a useful tool for the isolation of genetically engineered HDDPC-derived stem cells for studies in tooth regenerative medicine.
Cells, Cultured
;
DNA Transposable Elements
;
Dental Pulp
;
cytology
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
Nerve Tissue Proteins
;
genetics
;
Tooth, Deciduous
;
cytology
;
Transfection
10.Evaluation of zirconia-porcelain interface using X-ray diffraction.
Tariq F ALGHAZZAWI ; Gregg M JANOWSKI
International Journal of Oral Science 2015;7(3):187-195
The aim of this study was to determine if accelerated aging of porcelain veneering had an effect on the surface properties specific to a tetragonal-to-monoclinic transformation (TMT) of zirconia restorations. Thirty-six zirconia samples were milled and sintered to simulate core fabrication followed by exposure to various combinations of surface treatments including as-received (control), hydrofluoric acid (HF), application of liner plus firings, application of porcelain by manual layering and pressing with firing, plus accelerated aging. The quantity of transformed tetragonal to monoclinic phases was analyzed utilized an X-ray diffractometer and one-way analysis of variance was used to analyze data. The control samples as provided from the dental laboratory after milling and sintering process had no TMT (Xm = 0). There was an effect on zirconia samples of HF application with TMT (Xm = 0.8%) and liner plus HF application with TMT (Xm = 8.7%). There was an effect of aging on zirconia samples (no veneering) with significant TMT (Xm = 70.25%). Both manual and pressing techniques of porcelain applications reduced the TMT (manual, Xm = 4.41%, pressing, Xm = 11.57%), although there was no statistical difference between them. It can be concluded that simulated applications of porcelain demonstrated the ability to protect zirconia from TMT after aging with no effect of a liner between different porcelain applications. The HF treatment also caused TMT.
Dental Porcelain
;
chemistry
;
Surface Properties
;
X-Ray Diffraction
;
methods
;
Zirconium
;
chemistry