1.Secretion and expression of vascular endothelial growth factor and interleukin-8 by SH-SY5Y human neuroblastoma cells.
Zhigang FAN ; Yu LIN ; Qiping HUANG ; Meirong LUO ; Qinghua TIAN ; Donghuo ZHONG ; Quanyi FENG ; Zezhi WU
Chinese Journal of Biotechnology 2013;29(11):1629-1643
To establish vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) as secretary biomarkers for cell growth on topographic substrates, we have evaluated the secretion and expression of these 2 factors by SH-SY5Y human neuroblastoma cells on poly-L-lactide (PLLA) micropillar arrayed topographic substrates. We fabricated topographic substrates with UV lithography, silicon etching and polydimethylsiloxane-based replica molding, and interfaced SH-SY5Y human neuroblastoma cells with both the topographic substrates and PLLA flat substrates. Cell morphology and spreading were examined with scanning electron microscopy. The secretion and mRNA expression of VEGF and IL-8 were evaluated with enzyme linked immunosorbent assay (ELISA) and real time qPCR, respectively, 24 hours after cell plating. We successfully achieved 4 topographic substrates with a nominal pillar diameter of 2 microm and 4 microm, and a nominal pillar spacing of 2 microm and 7 microm. We found that the secretion and mRNA expression of VEGF and/or IL-8 by SH-SY5Y cells on 2-2 microm (pillar diameter-spacing), 4-2 microm and 4-7 microm topographic substrates were upregulated in comparison to those by cells on PLLA flat substrate, 24 hours after cell plating. Furthermore, both cytokines were even more substantially upregulated on the 2-7 microm substrate than on the other 3 topographic substrates. Compared to those on PLLA flat substrate, cells on topographic substrates showed significant changes in morphology (spreading area, perimeter and roundness), and the increase in the secretion and mRNA expression of VEGF and IL-8 was accompanied with a decrease in cell spreading areas. These results provided evidence that pillar arrayed topography was an important microenvironmental factor in affecting VEGF and IL-8 expression or secretion, and VEGF and IL-8 might serve as important secretary biomarkers for growth on topographic substrates by SH-SY5Y cells.
Biomarkers
;
Cell Line
;
Cell Proliferation
;
Cellular Microenvironment
;
Humans
;
Interleukin-8
;
genetics
;
secretion
;
Neuroblastoma
;
secretion
;
Polyesters
;
chemistry
;
RNA, Messenger
;
genetics
;
Vascular Endothelial Growth Factor A
;
genetics
;
secretion
2.Transfection of dominant negative MyD88 decreases IL-8 production in bacteria-infected airway epithelial cells.
Yan FENG ; Fang WANG ; Xiangwen CHEN ; Yun FENG ; Ning HUANG ; Boyao WANG ; Qi WU
Journal of Biomedical Engineering 2006;23(5):1092-1095
Interleukin-8 (IL-8) is an important activator and chemoattratant of neutrophils and has been implicated in airway inflammatory diseases. To explore the new gene therapeutic strategies for airway inflammation, plasmid expressing dominant negative myeloid differentiation protein (MyD88 DN) was constructed and transfected into human airway epithelial cell lines A549 and SPC-A-I. The cells were challenged with M. tuberculosis, P. aeruginosa or K. pneumoniae and the release of IL-8 was measured using ELISA. The results showed that the supernatants of M. tuberculosis and R. aeruginosa enhanced IL-8 release from the epithelial cells; and transfection of MyD88 DN diminished this effect. MyD88 DN also reduced IL-8 release from cells induced by live bacteria of P. aeruginosa or K. pneumoniae. These data suggest that MyD88 could be used as a target gene in the gene therapy of airway inflammation.
Cells, Cultured
;
Epithelial Cells
;
microbiology
;
secretion
;
Humans
;
Interleukin-8
;
secretion
;
Mycobacterium tuberculosis
;
Myeloid Differentiation Factor 88
;
genetics
;
Pseudomonas aeruginosa
;
Transfection
3.Effect of asymmetric dimethylarginine on MIF expression and TNF-α and IL-8 secretion in THP-1 monocytes-derived macrophages.
Zhen-dong ZHU ; Zhuo YU ; Xuan ZHANG ; Yong-jin WANG ; Dian-hua WANG
Journal of Southern Medical University 2011;31(1):1-4
OBJECTIVETo investigate the effect of ADMA on macrophage migration inhibitory factor (MIF) expression and tumor necrosis factor-α (TNF-α) and IL-8 secretion in THP-1 monocyte-derived macrophages. METHIDS: THP-1 monocytes were induced to differentiate into macrophages by a 24-h incubation with 160 nmol/L PMA. The THP-1 monocyte-derived macrophages were exposed to different concentrations of ADMA for 24 h, and the changes in MIF mRNA and protein expressions were analyzed with RT-PCR and Western blotting, respectively. Enzyme-linked immunosorbent assay was used to detect the levels of TNF-α and IL-8 in the supernatant of THP-1-derived macrophages following ADMA treatments.
RESULTSADMA obviously up-regulated MIF mRNA and protein expressions in THP-1-derived macrophages in a concentration- dependent manner. Exposure of the cells to 15 µmol/L ADMA for 24 h showed the most potent effect in up-regulating MIF mRNA and protein expressions. ADMA treatment also resulted in a dose-dependent increase of the levels of TNF-α and IL-8 in the culture supernatant of the macrophages, and the peak levels occurred following the treatment with 15 µmol/L ADMA.
CONCLUSIONADMA can up-regulate MIF expression and induce TNF-α and IL-8 secretion in THP-1 monocyte-derived macrophages.
Arginine ; analogs & derivatives ; pharmacology ; Cell Differentiation ; Cell Line ; Humans ; Interleukin-8 ; secretion ; Intramolecular Oxidoreductases ; genetics ; metabolism ; Macrophage Migration-Inhibitory Factors ; genetics ; metabolism ; Macrophages ; cytology ; metabolism ; Monocytes ; cytology ; Phenanthrenes ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Tumor Necrosis Factor-alpha ; secretion
4.CagA(+) H. pylori induces Akt1 phosphorylation and inhibits transcription of p21(WAF1/CIP1) and p27(KIP1) via PI3K/Akt1 pathway.
Shu-Ping LI ; Xue-Jun CHEN ; Ai-Hua SUN ; Jin-Fang ZHAO ; Jie YAN
Biomedical and Environmental Sciences 2010;23(4):273-278
OBJECTIVECytotoxin-associated protein (CagA) of H. pylori has been confirmed to be closely associated with gastric inflammation and tumorigenesis, but the mechanism behind it is little understood. In this study, we try to determine roles of CagA(+) strain in activating PI3K/Akt1 signaling pathway, and affecting expression of p21(WAF1/CIP1) and p27(KIP1), and also in releasing IL-8 in host cells.
METHODSAkt1 phosphorylation and IL-8 levels of CagA(+) and CagA⁻ strain infected AGS cells were detected by ELISAs. Two quantitative RT-PCRs were established to measure p21(WAF1/CIP1) and p27(KIP1) mRNA levels in the CagA(+) and CagA⁻ strain infected cells. LY294002, an inhibitor of PI3K/Akt pathway, was used to define effect of the pathway in IL-8 release.
RESULTSCagA(+) strain could induce an obvious elevation of Akt1 phosphorylation in the infected AGS cells while CagA? strain failed to do so. The CagA(+) H. pylori strain infected AGS cells showed significant drops both in p21(WAF1/CIP1) and p27(KIP1) mRNA levels, whereas the CagA⁻ H. pylori strain caused a remarkable increase in p21(WAF1/CIP1) mRNA without affecting p27(KIP1) gene transcription in the AGS cells. Both the CagA(+) and CagA⁻ H. pylori strains enabled AGS cells to produce close elevated levels of IL-8, and the LY294002 block resulted in unexpected elevations of IL-8 levels.
CONCLUSIONSCagA can activate PI3K/Akt1 pathway that plays an inhibitory role in IL-8 release in H. pylori infected AGS cells. Activation of PI3K/Akt1 pathway and subsequent negative regulation of p21(WAF1/CIP1) and p27(KIP1) expression might be involved in CagA-associated carcinogenesis.
Antigens, Bacterial ; genetics ; physiology ; Bacterial Proteins ; genetics ; physiology ; Cell Line ; Cyclin-Dependent Kinase Inhibitor p21 ; biosynthesis ; Cyclin-Dependent Kinase Inhibitor p27 ; Gastric Mucosa ; cytology ; enzymology ; microbiology ; Helicobacter pylori ; metabolism ; pathogenicity ; physiology ; Humans ; Interleukin-8 ; secretion ; Intracellular Signaling Peptides and Proteins ; metabolism ; Phosphatidylinositol 3-Kinases ; metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Transcription, Genetic ; Virulence
5.Effect of puerarin on the release of interleukin-8 in co-culture of human bronchial epithelial cells and neutrophils.
Wei PANG ; Xiao-Mei LAN ; Cheng-Bin WANG
Chinese journal of integrative medicine 2012;18(4):283-287
OBJECTIVETo investigate the effect of puerarin on interleukin (IL)-8 mRNA expression and the protein release in the co-culture of human bronchial epithelial (BEAS-2B) cells and human neutrophils.
METHODSBEAS-2B cells and neutrophills were cultured separately and co-cultured with puerarin (50, 100, and 200 μg/mL) for a predetermined time. Cytokines in culture supernatant were evaluated by protein array and IL-8 quantified by enzyme-linked immunosorbent assay (ELISA). IL-8 mRNA expression was evaluated by real-time quantitative polymerase chain reaction (real-time qPCR).
RESULTSThe co-culture of BEAS-2B cells and neutrophils exhibited synergistic effects on IL-8 mRNA expression in BEAS-2B cells, but not in neutrophils after 12 h incubation (P<0.01), as compared with that in BEAS-2B cells or neutrophils alone. IL-8 protein release in the culture supernatant was obviously elevated when BEAS-2B cells were co-cultured with human neutrophils as compared with that in the supernatant of BEAS-2B cells or neutrophils alone after incubated for 2, 6, 12, and 18 h (P<0.01). Treatment with puerarin could significantly down-regulate the expression of IL-8 mRNA in BEAS-2B cells and IL-8 release in the supernatant of the co-culture of BEAS-2B cells and neutrophils (P<0.01).
CONCLUSIONPuerarin could exhibit anti-inflammatory activity by suppressing IL-8 production from the co-culture of human bronchial epithelial cells and neutrophils.
Adult ; Bronchi ; cytology ; Cell Communication ; drug effects ; Cell Line ; Coculture Techniques ; Epithelial Cells ; cytology ; drug effects ; metabolism ; Fluorescence ; Gene Expression Regulation ; drug effects ; Humans ; Interleukin-8 ; genetics ; secretion ; Isoflavones ; pharmacology ; Neutrophils ; cytology ; drug effects ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Real-Time Polymerase Chain Reaction
6.Nucleotide Binding Oligomerization Domain 1 Is an Essential Signal Transducer in Human Epithelial Cells Infected with Helicobacter pylori That Induces the Transepithelial Migration of Neutrophils.
Beom Jin KIM ; Jae Yeol KIM ; Eung Soo HWANG ; Jae Gyu KIM
Gut and Liver 2015;9(3):358-369
BACKGROUND/AIMS: The cytosolic host protein nucleotide binding oligomerization domain 1 (Nod1) has emerged as a key pathogen recognition molecule for innate immune responses in epithelial cells. The purpose of the study was to elucidate the mechanism by which Helicobacter pylori infection leads to transepithelial neutrophil migration in a Nod1-mediated manner. METHODS: Human epithelial cell lines AGS and Caco-2 were grown and infected with H. pylori. Interleukin (IL)-8 mRNA expression and IL-8 secretion were assessed, and nuclear factor kappaB (NF-kappaB) activation was determined. Stable transfections of AGS and Caco-2 cells with dominant negative Nod1 were generated. Neutrophil migration across the monolayer was quantified. RESULTS: Cytotoxin-associated gene pathogenicity island (cagPAI)(+) H. pylori infection upregulated IL-8 mRNA expression and IL-8 secretion in AGS and Caco-2 cells compared with controls. NF-kappaB activation, IL-8 mRNA expression and IL-8 secretion by cagPAI knockdown strains were reduced compared with those infected with the wild-type strain. NF-kappaB activation, IL-8 mRNA expression and IL-8 secretion in dominant-negative (DN)-Nod1 stably transfected cells were reduced compared with the controls. The transepithelial migration of neutrophils in DN-Nod1 stably transfected cells was reduced compared with that in controls. CONCLUSIONS: Signaling through Nod1 plays an essential role in neutrophil migration induced by the upregulated NF-kappaB activation and IL-8 expression in H. pylori-infected human epithelial cells.
Adult Stem Cells/physiology
;
Caco-2 Cells
;
Cell Line
;
Epithelial Cells/*metabolism/microbiology
;
Gene Expression
;
Genomic Islands
;
Helicobacter Infections/*genetics
;
*Helicobacter pylori
;
Humans
;
Interleukin-8/genetics/secretion
;
NF-kappa B/metabolism
;
Neutrophils/*physiology
;
Nod1 Signaling Adaptor Protein/*physiology
;
RNA, Messenger/metabolism
;
Signal Transduction
;
Transendothelial and Transepithelial Migration/*physiology
;
Up-Regulation