1.Regulatory mechanism of deferoxamine on macrophage polarization and wound healing in mice with deep tissue injury.
Hui SHAN ; Zi Rui ZHANG ; Xiao Ying WANG ; Jia Yu HOU ; Ju ZHANG
Chinese Journal of Burns 2022;38(8):767-777
Objective: To investigate the effects of deferoxamine on macrophage polarization and wound healing in mice with deep tissue injury (DTI) and its mechanism. Methods: The experimental research methods were adopted. Fifty-four male C57BL/6J mice of 6-8 weeks old were divided into DTI control group, 2 mg/mL deferoxamine group, and 20 mg/mL deferoxamine group according to random number table, with 18 mice in each group. DTI was established on the back of mice by magnet compression method. From post injury day (PID) 1, mice were injected subcutaneously with 100 µL normal saline or the corresponding mass concentration of deferoxamine solution every other day at the wound edge until the samples were collected. Another 6 mice without any treatment were selected as normal control group. Six mice in each of the three DTI groups were collected on PID 3, 7, and 14 to observe the wound changes and calculate the wound healing rate. Normal skin tissue of mice in normal control group was collected on PID 3 in other groups (the same below) and wound tissue of mice in the other three groups on PID 7 and 14 was collected for hematoxylin-eosin (HE) staining to observe the tissue morphology. Normal skin tissue of mice in normal control group and wound tissue of mice in the other three groups on PID 7 were collected, and the percentages of CD206 and CD11c positive area were observed and measured by immunohistochemical staining, and the mRNA and protein expressions of CD206, CD11c, and inducible nitric oxide synthase (iNOS) were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Normal skin tissue of mice in normal control group and wound tissue of mice in DTI control group and 20 mg/mL deferoxamine group were collected on PID 3, 7, and 14, and the protein expressions of signal transducer and activator of transcription 3 (STAT3) and interleukin-10 (IL-10) were detected by Western blotting. The sample number in each group at each time point in the above experiments. The RAW264.7 cells were divided into 50 μmol/L deferoxamine group, 100 μmol/L deferoxamine group, 200 μmol/L deferoxamine group, and blank control group, which were treated correspondingly, with 3 wells in each group. The positive cell percentages of CD206 and CD86 after 48 h of culture were detected by flow cytometry. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and least significant difference test. Results: On PID 7, the wound healing rates of mice in 2 mg/mL and 20 mg/mL deferoamine groups were (17.7±3.7)% and (21.5±5.0)%, respectively, which were significantly higher than (5.1±2.3)% in DTI control group (P<0.01). On PID 14, the wound healing rates of mice in 2 mg/mL and 20 mg/mL deferoamine groups were (51.1±3.8)% and (57.4±4.4)%, respectively, which were significantly higher than (25.2±3.8)% in DTI control group (P<0.01). HE staining showed that the normal skin tissue layer of mice in normal control group was clear, the epidermis thickness was uniform, and skin appendages such as hair follicles and sweat glands were visible in the dermis. On PID 7, inflammation in wound tissue was obvious, the epidermis was incomplete, and blood vessels and skin appendages were rare in mice in DTI control group; inflammatory cells in wound tissue were reduced in mice in 2 mg/mL and 20 mg/mL deferoxamine groups, and a few of blood vessels and skin appendages could be seen. On PID 14, inflammation was significantly alleviated and blood vessels and skin appendages were increased in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups compared with those in DTI control group. On PID 7, the percentages of CD206 positive area in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups were significantly higher than that in DTI control group (P<0.01), the percentage of CD206 positive area in wound tissue of mice in DTI control group was significantly lower than that in normal skin tissue of mice in normal control group (P<0.01), the percentage of CD206 positive area in wound tissue of mice in 20 mg/mL deferoxamine group was significantly higher than that in normal skin tissue of mice in normal control group (P<0.01). The percentages of CD11c positive area in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups were significantly lower than those in DTI control group and normal skin tissue in normal control group (P<0.05 or P<0.01), and the percentage of CD11c positive area in normal skin tissue of mice in normal control group was significantly higher than that in DTI control group (P<0.05). On PID 7, the CD206 mRNA expressions in the wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups were significantly higher than that in DTI control group (P<0.01), but significantly lower than that in normal skin tissue in normal control group (P<0.01); the CD206 mRNA expression in wound tissue of mice in DTI control group was significantly lower than that in normal skin tissue in normal control group (P<0.01). The mRNA expressions of CD11c and iNOS in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly lower than those in DTI control group (P<0.01). The mRNA expressions of CD11c in the wound tissue of mice in DTI control group, 2 mg/mL and 20 mg/mL deferoamine groups were significantly higher than that in normal skin tissue in normal control group (P<0.01). Compared with that in normal skin tissue in normal control group, the mRNA expressions of iNOS in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly decreased (P<0.01), and the mRNA expression of iNOS in wound tissue of mice in DTI control group was significantly increased (P<0.01). On PID 7, the protein expressions of CD206 in the wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly higher than those in DTI control group and normal skin tissue in normal control group (P<0.01), and the protein expression of CD206 in wound tissue of mice in DTI control group was significantly lower than that in normal skin tissue in normal control group (P<0.01). The protein expressions of CD11c and iNOS in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly lower than those in DTI control group (P<0.01). The protein expressions of CD11c and iNOS in wound tissue of mice in DTI control group were significantly higher than those in normal skin tissue in normal control group (P<0.01). The CD11c protein expressions in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly higher than those in normal skin tissue in normal control group (P<0.05 or P<0.01). The protein expression of iNOS in wound tissue of mice in 2 mg/mL deferoamine group was significantly lower than that in 20 mg/mL deferoamine group and normal skin tissue in normal control group (P<0.05). On PID 3, 7, and 14, the protein expressions of STAT3 and IL-10 in wound tissue of mice in 20 mg/mL deferoxamine group were significantly higher than those in DTI control group (P<0.05 or P<0.01), and the protein expressions of STAT3 were significantly higher than those in normal skin tissue in normal control group (P<0.05 or P<0.01). On PID 7 and 14, the protein expressions of IL-10 in wound tissue of mice in 20 mg/mL deferoxamine group were significantly higher than those in normal skin tissue in normal control group (P<0.01). On PID 3, 7, and 14, the protein expressions of IL-10 in wound tissue of mice in DTI control group were significantly lower than those in normal skin tissue in normal control group (P<0.05 or P<0.01). After 48 h of culture, compared with those in blank control group, the CD206 positive cell percentages in 100 μmol/L and 200 μmol/L deferoamine groups were significantly increased (P<0.01), while the CD86 positive cell percentages in 100 μmol/L and 200 μmol/L deferoamine groups were significantly decreased (P<0.01). Conclusions: Deferoxamine can promote the polarization of macrophages toward the anti-inflammatory M2 phenotype and improve wound healing by enhancing the STAT3/IL-10 signaling pathway in DTI mice.
Animals
;
Deferoxamine/pharmacology*
;
Inflammation
;
Interleukin-10
;
Macrophages
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Wound Healing
2.Effects of Aeriscardovia aeriphila on growth performance, antioxidant functions, immune responses, and gut microbiota in broiler chickens.
Muhammad Zahid FAROOQ ; Xinkai WANG ; Xianghua YAN
Journal of Zhejiang University. Science. B 2023;24(11):1014-1026
Aeriscardovia aeriphila, also known as Bifidobacterium aerophilum, was first isolated from the caecal contents of pigs and the faeces of cotton-top tamarin. Bifidobacterium species play important roles in preventing intestinal infections, decreasing cholesterol levels, and stimulating the immune system. In this study, we isolated a strain of bacteria from the duodenal contents of broiler chickens, which was identified as A. aeriphila, and then evaluated the effects of A. aeriphila on growth performance, antioxidant functions, immune functions, and gut microbiota in commercial broiler chickens. Chickens were orally gavaged with A. aeriphila (1×109 CFU/mL) for 21 d. The results showed that A. aeriphila treatment significantly increased the average daily gain and reduced the feed conversion ratio (P<0.001). The levels of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) were significantly increased following A. aeriphila treatment (P<0.05). Blood urea nitrogen and aspartate aminotransferase levels were decreased, whereas glucose and creatinine levels increased as a result of A. aeriphila treatment. Furthermore, the levels of serum antioxidant enzymes, including catalase (P<0.01), superoxide dismutase (P<0.001), and glutathione peroxidase (P<0.05), and total antioxidant capacity (P<0.05) were enhanced following A. aeriphila treatment. A. aeriphila treatment significantly increased the levels of serum immunoglobulin A (IgA) (P<0.05), IgG (P<0.01), IgM (P<0.05), interleukin-1 (IL-1) (P<0.05), IL-4 (P<0.05), and IL-10 (P<0.05). The broiler chickens in the A. aeriphila group had higher secretory IgA (SIgA) levels in the duodenum (P<0.01), jejunum (P<0.001), and cecum (P<0.001) than those in the control group. The messenger RNA (mRNA) relative expression levels of IL-10 (P<0.05) and IL-4 (P<0.001) in the intestinal mucosa of chickens were increased, while nuclear factor-κB (NF-κB) (P<0.001) expression was decreased in the A. aeriphila group compared to the control group. Phylum-level analysis revealed Firmicutes as the main phylum, followed by Bacteroidetes, in both groups. The data also found that Phascolarctobacterium and Barnesiella were increased in A. aeriphila-treated group. In conclusion, oral administration of A. aeriphila could improve the growth performance, serum antioxidant capacity, immune modulation, and gut health of broilers. Our findings may provide important information for the application of A. aeriphila in poultry production.
Animals
;
Swine
;
Antioxidants/pharmacology*
;
Chickens
;
Gastrointestinal Microbiome
;
Interleukin-10/pharmacology*
;
Interleukin-4/pharmacology*
;
NF-kappa B/metabolism*
;
Immunity
;
Diet/veterinary*
;
Animal Feed/analysis*
;
Dietary Supplements/analysis*
3.Regulatory effect of IL-10 on expression of tissue factor induced by IL-6 in peripheral blood mononuclear cells.
Mei HONG ; Wen-Ning WEI ; Rui YANG ; Yan YANG ; Shan-Jun SONG
Journal of Experimental Hematology 2005;13(3):479-482
To investigate the role of anti-inflammatory cytokine in acute coronary syndrome (ACS), the effect of IL-10 on expression of tissue factor (TF) induced by IL-6 in peripheral blood mononuclear cells (PBMNC) were studied. PBMNC were allowed to culture with rhIL-10 before being stimulated by rhIL-6. One-step recalcification clotting time was used to evaluate procoagulant activity (PCA) of PBMNC. The expression and activity of TF protein were determined by ELISA and cell chromogenic substrate assay. The results showed that the expression of PCA, TF protein and its activity in PBMNC increased significantly after being stimulated by rhIL-6 (P < 0.01). In PBMNC, rhIL-6-induced PCA was regulated by rhIL-10 in different doses. This effect was associated with reduction of TF protein expression and activity by rhIL-10 (P < 0.01). In conclusion, IL-10 down-regulated expression PCA and TF in PBMNC, inhibitory effect of IL-10 on expression and activity of PBMNC TF may be important protective mechanism for ACS, regulation imbalance between inflammatory and anti-inflammatory cytokines may be important factor participating in coronary thrombosis.
Cells, Cultured
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Interleukin-10
;
pharmacology
;
Interleukin-6
;
genetics
;
pharmacology
;
Leukocytes, Mononuclear
;
cytology
;
drug effects
;
metabolism
;
Recombinant Proteins
;
pharmacology
;
Thromboplastin
;
biosynthesis
5.Effects of interleukin-17A on liver and kidney injury and prognosis in septic mice.
Yonghui LIANG ; Chun GUAN ; Haining MENG ; Weifeng XIE ; Xiangqi MENG ; Yan QU
Chinese Critical Care Medicine 2023;35(6):592-597
OBJECTIVE:
To explore the effect of interleukin-17A (IL-17A) on liver and kidney injury and prognosis in septic mice.
METHODS:
A total of 84 SPF male C57BL/6 mice were randomly divided into sham operation group (Sham group), cecal ligation and puncture (CLP) induced sepsis model group (CLP group), and IL-17A intervention group. IL-17A intervention group were then divided into five subgroups according to the dose of IL-17A (0.25, 0.5, 1, 2, 4 μg). Mice in the IL-17A intervention group were intraperitoneally injected with the corresponding dose of IL-17A 100 μL immediately after surgery. The other groups were intraperitoneally injected with 100 μL phosphate buffer solution (PBS). The survival rate of mice was observed at 7 days, and peripheral blood and liver, kidney and spleen tissues were collected. According to the 7-day survival, another 18 mice were randomly divided into Sham group, CLP group, and 1 μg IL-17A intervention group. Peripheral blood samples were collected at 12 hours and 24 hours after CLP, and the mice were sacrificed to obtain liver, kidney, and spleen tissues. The behavior and abdominal cavity of each group were observed. The levels of peripheral blood liver and kidney function indexes and inflammatory factors were detected. The histopathological changes of liver and kidney were observed under light microscope. The peripheral blood and spleen tissues were inoculated in the medium, the number of bacterial colonies was calculated, and the bacterial migration of each group was evaluated in vitro.
RESULTS:
Except for the Sham group, the 7-day survival rate of mice in the 1 μg IL-17A intervention group was the highest (75.0%), so this condition was selected as the intervention condition for the subsequent study. Compared with Sham group, the liver and kidney functions of CLP group were significantly damaged at each time point after operation. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and serum creatinine (SCr) reached the peak at 24 hours after operation, and the liver and kidney pathological scores reached the peak at 7 days after operation, the levels of inflammatory cytokines interleukin (IL-17A, IL-6, IL-10) reached the peak at 12 hours after operation, and tumor necrosis factor-α (TNF-α) reached the peak at 24 hours after operation. In addition, a large number of bacteria proliferated in the peripheral blood and spleen, which reached the peak on day 7. Compared with the CLP group, exogenous administration of 1 μg IL-17A significantly delayed the rising trend of each index in the early stage of sepsis [24-hour ALT (U/L): 166.95±5.20 vs. 271.30±6.11, 24-hour AST (U/L): 599.42±7.25 vs. 1 013.27±3.37, 24-hour BUN (mg/L): 815.4±26.3 vs. 1 191.2±39.4, 24-hour SCr (μmol/L): 29.34±0.87 vs. 60.75±3.83, 7-day liver pathological score: 2.50 (2.00, 3.00) vs. 9.00 (8.50, 9.00), 7-day kidney pathological score: 1.00 (1.00, 2.00) vs. 5.00 (4.50, 5.00), 12-hour IL-17A (ng/L): 105.21±0.31 vs. 111.28±1.37, 12-hour IL-6 (ng/L): 83.22±1.01 vs. 108.88±0.99, 12-hour IL-10 (ng/L): 731.54±3.04 vs. 790.25±2.54, 24-hour TNF-α (μg/L): 454.67±0.66 vs. 576.18±0.76, 7-day peripheral blood colony count (CFU/mL): 600 (400, 600) vs. 4 200 (4 200, 4 300), 7-day spleen tissue colony count (CFU/g): 4 600 (4 400, 4 600) vs. 23 400 (23 200, 23 500), all P < 0.05].
CONCLUSIONS
Appropriate dose (1 μg) of exogenous IL-17A can reduce the lethal inflammatory response induced by CLP and improve the ability of bacterial clearance, thereby alleviating liver and kidney injury and improving the 7-day survival rate of septic mice.
Animals
;
Male
;
Mice
;
Interleukin-10
;
Interleukin-17/pharmacology*
;
Interleukin-6
;
Kidney/physiopathology*
;
Liver/physiopathology*
;
Mice, Inbred C57BL
;
Prognosis
;
Sepsis
;
Tumor Necrosis Factor-alpha
6.Effects of tacrolimus and cyclosporine on albumin secretion in cultured human hepatocyte.
Ying LI ; Zhi-hong LIU ; Yan-fei HUANG ; Lei-shi LI ; Fu-you LIU ; You-ming PENG
Journal of Central South University(Medical Sciences) 2006;31(3):387-391
OBJECTIVE:
To investigate the effects of inflammation cytokines, (FK506) and cyclosporine (CSA) on albumin secretion, and the effects of FK506 and CSA on the IL-6 induced suppression of albumin synthesis in cultured human hepatocytes.
METHODS:
Human hepatoma cell lines (HepG2 cells) were separately cultured with IL-6, IL-2 and IL-10 (0 approximately 10 microg/L) and FK506, CSA (0 approximately 100 microg/L) for 48 h. In another experiment, HepG2 cells were stimulated with different doses of FK506 and CSA (0 approximately 10 microg/L) in the presence of IL-6 (5 microg/L) for 48 h. Albumin levels in the supernatant of all groups were measured by radioimmunoassay (RIA). The concentration of LDH secreted by cells stimulated with FK506 and CSA were detected with spectrophotometry.
RESULTS:
For cultured HepG2 cells, IL-6 significantly decreased albumin levels in a dose-dependent manner (P <0.01), and the maximal inhibition occurred at 5 microg/L. CSA mildly decreased albumin levels and a significant reduction in albumin production was first visible at 10 microg/ L (P <0.05). In contrast, IL-2, IL-10 and FK506 did not significantly influence albumin pro- duction (P > 0.05). FK506 obviously decreased LDH levels in the supernatant (P < 0.05) and attenuated IL-6 induced suppression of albumin synthesis (P < 0.01). But CSA slightly increased LDH concentration and could not block the IL-6 induced decrease of albumin synthesis (P > 0.05).
CONCLUSION
IL-6 but not IL-2 and IL-10 suppressed the production of hepatic albumin in vitro. FK506 protected against the suppression of hepatic albumin synthesis caused by IL-6, suggesting its potential role in improving hypoalbuminaemia in immune glomerulonephritis.
Albumins
;
metabolism
;
Carcinoma, Hepatocellular
;
metabolism
;
pathology
;
Cyclosporine
;
pharmacology
;
Hepatocytes
;
physiology
;
Humans
;
Interleukin-10
;
pharmacology
;
Interleukin-2
;
pharmacology
;
Interleukin-6
;
pharmacology
;
Liver Neoplasms
;
metabolism
;
pathology
;
Tacrolimus
;
pharmacology
;
Tumor Cells, Cultured
7.Effect of synergistic polarization macrophage modulated by N-terminal domain of a2 vacuolar ATPase and macrophage colony stimulating factor on proliferation of gastric cancer cells.
Dandan LIAN ; Guiliang MA ; Chen SUN ; Weizheng MAO
Chinese Journal of Gastrointestinal Surgery 2016;19(2):209-215
OBJECTIVETo investigate the synergistic effect between the N-terminus domain of the a2 isoform of vacuolar ATPase (a2NTD) and macrophage colony-stimulating factor (M-CSF) on modulating macrophage polarization and the impact of polarized macrophages on proliferation of gastric cancer cells.
METHODSPeripheral blood mononuclear cells were derived from healthy donor and induced into macrophages. Then macrophages were randomly divided into four groups: the control group (RPMI 1640), the experimental group I (M-CSF 100 μg/L), the experimental group II (a2NTD 500 μg/L) and the experimental group III (a2NTD 500 μg/L plus M-CSF 100 μg/L). After stimulation for 48 hours, double color immunofluorescence cytochemistry was adopted to detect the expression of cell membrane molecules on macrophages; ELISA was used to measure the secretion of cytokines IL-10 and IL-12; CCK-8 assay was used to evaluate the impact of macrophages on proliferation ability of gastric cancer cell strain SGC-7901.
RESULTSThe expression of CD68, also known as macrophage surface antigen, was detected on macrophage membrane in all four groups (+). The mean absorbance (A) was 0.092 ± 0.005 in control group, 0.095 ± 0.006 in group I, 0.094 ± 0.005 in group II, 0.094 ± 0.005 in group III, and no significant differences were observed among 4 groups (all P>0.05). Meanwhile, the expression of CD206, which mainly exists on M2 macrophage membrane, was hard to detect in control group (-) with A 0.025 ± 0.004; it was normal in groupI and group II (+) with A 0.191 ± 0.012 in group I and 0.197 ± 0.136 in group II (P=0.212), and it was up-regulated significantly in group III (+++) with A 0.285 ± 0.011. There were significant differences between either two groups except group I and group II (all P<0.01). Secretion of IL-10 in group I and group II [(85.65 ± 13.64) ng/L and (87.77 ± 14.25) ng/L] was significantly higher compared with control group [(71.67 ± 7.56) ng/L, P<0.01]. Secretion of IL-12 in group I and group II [(9.91 ± 1.50) ng/L and (10.15 ± 1.80) ng/L] was significantly lower compared with control group [(16.87 ± 1.10) ng/L, P<0.01]. Secretion of IL-10 in group III [(116.98 ± 14.27) ng/L] was the highest, and secretion of IL-12 [(5.31 ± 0.88) ng/L] was the lowest (all P<0.01). There was a synergistic effect between a2NTD and M-CSF on the secretion of both IL-10 and IL-12. Elevated proliferation of gastric cancer cell strain SGC-7901 was detected in all four groups, in which group III showed the greatest impact compared with other 3 groups (P<0.01).
CONCLUSIONSa2NTD and M-CSF show a synergistic effect in modulating macrophage phenotype and the secretion of IL-10 and IL-12. The polarized macrophage can significantly enhance proliferation of gastric cancer cell strain SGC-7901.
Cell Proliferation ; Humans ; Interleukin-10 ; metabolism ; Interleukin-12 ; metabolism ; Macrophage Colony-Stimulating Factor ; pharmacology ; Macrophages ; cytology ; Phenotype ; Stomach Neoplasms ; pathology ; Tumor Cells, Cultured ; Vacuolar Proton-Translocating ATPases ; pharmacology
8.Theanine improves the function of dendritic cells via the downregulation of cyclooxygenase-2 expression.
Mingsheng LEI ; Jianhong ZUO ; Min LI ; Qihua GU ; Chengping HU
Chinese Medical Journal 2014;127(8):1545-1549
BACKGROUNDTumor cells can reduce the number of dendritic cells (DCs) in the tumor environment and cause DC dysfunction through autocrine or paracrine pathways. We sought to measure cyclooxygenase-2 (COX-2) expression in bombesin-inhibited DCs treated with theanine in vitro and to explore the protection and activation effects of theanine on DCs.
METHODSEnzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting were used to analyze the effects of theanine on COX-2 expression and interleukin (IL)-12/IL-10 secretion of bombesin-treated DCs.
RESULTSDCs acquired an impaired phenotype as a result of bombesin treatment. Theanine increased the expression of mature DC surface molecules. The number of cell apoptosis with the treatment of bombesin and theanine significantly decreased, accounting for 15.9%, compared with 26.1% of cell apoptosis with bombesin. COX-2 expression in bombesin-treated DCs was inhibited by theanine in a dose-dependent manner. Theanine promoted DC secretion of IL-12. IL-12 levels reached (137.4 ± 4.9) pg/ml with theanine at 200 µmol/L. However, theanine inhibited the secretion of IL-10 in a dose-dependent manner. IL-10 levels were only (58.4 ± 6.9) pg/ml with theanine at 200 µmol/L.
CONCLUSIONTheanine inhibits the transcription and translation of COX-2 and regulates the balance of IL-10/IL-12 secretion in bombesin-inhibited DCs, leading to the recovery of a state of activation in DCs.
Bombesin ; pharmacology ; Cells, Cultured ; Cyclooxygenase 2 ; metabolism ; Dendritic Cells ; drug effects ; metabolism ; Enzyme-Linked Immunosorbent Assay ; Glutamates ; pharmacology ; Humans ; Interleukin-10 ; metabolism ; Interleukin-12 ; metabolism
9.Influence of adenovirus transfection on the maturation characteristics of human immature dendritic cells.
Yong-quan WANG ; Yi-zhi PENG ; Qiang WANG ; Yi-tao WANG ; Bo YOU
Chinese Journal of Burns 2006;22(6):458-461
OBJECTIVETo observe the changes in the phenotype characteristics and immune function after transfection of cord blood derived immature dendritic cells( imDC) with Adeasy-EGFP adenovirus vector, and to explore the function of IL-10 in inhibition of imDC maturation.
METHODSImmature dendritic cells were generated from human cord blood(CB) monocyte cultured with rhGM-CSF and rhIL-4. The recombinant adenovirus vector AdEASY-EGFP was transduced into immature dendritic cells on the third day with or without adding IL-10. The expression of cell maturation marker CD83, CD86 and HLA-DR were determined with flow cytometry. Allogeneic mixed leukocyte reaction( MLR) was used to examine the imDC's ability to promote T cell proliferation.
RESULTSThe expression of surface maturation markers of imDC after transfection with adenovirus were significantly up-regulated ( CD86:46+/-10; CD83: 38 +/- 7; HLA-DR: 82 + 12) , and its ability to promote T cell proliferation was also obviously increased( SI > 2. 0). However, the expression of surface maturation markers of imDC after IL-10 treatment had lower mature phenotypes expression after transduction (CD86:8 +/- 5; CD83: 9 +/- 3; HLA-DR:63 +/- 12), and T cell stimulating ability was decreased comparing with adenovirus transfection groups.
CONCLUSIONAdenovirus can be transduced into imDC with high efficiency, but transfection itself can promote imDC's maturation. IL-10 treatment can inhibit the tendency to maturation stimulated by adenovirus transduction efficiently.
Adenoviridae ; genetics ; Cell Differentiation ; Cells, Cultured ; Dendritic Cells ; cytology ; Genetic Vectors ; Humans ; Interleukin-10 ; pharmacology ; T-Lymphocytes ; metabolism ; Transfection
10.miR-148b inhibits M2 polarization of LPS-stimulated macrophages by targeting DcR3.
Li Yuan YANG ; Xiao Li LOU ; Yue WANG ; Yan Qiang HOU
Chinese Journal of Preventive Medicine 2023;57(8):1231-1237
Objective: To investigate the effect of microRNA (miR-148b) targeting decoy receptor 3 (DcR3) on macrophage polarization in sepsis. Methods: Experimental study. From December 2019 to December 2022, serum microRNA expression was detected in 3 patients with sepsis and 3 healthy controls in the clinical laboratory of Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. Phorbol 12-myristate 13-acetate (PMA) was used to induce the differentiation of human acute monocytic leukemia cells THP-1 into macrophages, and then lipopolysaccharide (LPS) was added to stimulate the establishment of a sepsis cell model, and the expression changes of miR-148b and DcR3 were detected by RT-PCR and Western blot. Overexpression of DcR3 was used to detect the expression levels of TNF-α, CD163 and IL-10 in macrophages stimulated by LPS (100 ng/ml). Overexpression of miR-148b was used to observe the changes of molecular markers of macrophage polarization. The targeting regulation effect of miR-148b on DcR3 was determined by dual-luciferase reporter assay. t test was used to analyze whether there were statistical differences among the groups. Results: The expression of miR-148b was down-regulated (P<0.05) and the expression of DcR3 was up-regulated (P<0.01) in THP-1 macrophages stimulated by LPS. Overexpression of DcR3 inhibited the expression of TNF-α (P<0.05) and promoted the expression of CD163 (P<0.01) and IL-10 (P<0.01). When miR-148b mimics was added, the opposite effect was observed. The dual-luciferase reporter assay confirmed that miR-148b targets and binds to DcR3, inhibiting its transcription and expression. The results of flow cytometry showed that DcR3 could reverse the promoting effect of miR-148b on the CD86/CD163 ratio of macrophages (P<0.05). Conclusion: miR-148b inhibits the expression of DcR3, thereby inhibiting M2 polarization in LPS-stimulated macrophage cells.
Humans
;
Interleukin-10
;
Lipopolysaccharides/pharmacology*
;
Macrophages
;
MicroRNAs/genetics*
;
Receptors, Tumor Necrosis Factor, Member 6b/metabolism*
;
Tumor Necrosis Factor-alpha