1.Involvement of interferon γ-producing mast cells in immune responses against melanocytes in vitiligo requires Mas-related G protein-coupled receptor X2 activation.
Zhikai LIAO ; Yunzhu YAO ; Bingqi DONG ; Yue LE ; Longfei LUO ; Fang MIAO ; Shan JIANG ; Tiechi LEI
Chinese Medical Journal 2025;138(11):1367-1378
BACKGROUND:
Increasing evidence indicates that oxidative stress and interferon γ (IFNγ)-driven cellular immune responses are responsible for the pathogenesis of vitiligo. However, the connection between oxidative stress and the local production of IFNγ in early vitiligo remains unexplored. The aim of this study was to identify the mechanism underlying the production of IFNγ by mast cells and its impact on vitiligo pathogenesis.
METHODS:
Skin specimens from the central, marginal, and perilesional skin areas of active vitiligo lesions were collected to characterize changes of mast cells, CD8 + T cells, and IFNγ-producing cells. Cell supernatants from hydrogen peroxide (H 2 O 2 )-treated keratinocytes (KCs) were harvested to measure levels of soluble stem cell factor (sSCF) and matrix metalloproteinase (MMP)-9. A murine vitiligo model was established using Mas-related G protein-coupled receptor-B2 (MrgB2, mouse ortholog of human MrgX2) conditional knockout (MrgB2 -/- ) mice to investigate IFNγ production and inflammatory cell infiltrations in tail skin following the challenge with tyrosinase-related protein (Tyrp)-2 180 peptide. Potential interactions between the Tyrp-2 180 peptide and MrgX2 were predicted using molecular docking. The siRNAs targeting MrgX2 and the calcineurin inhibitor FK506 were also used to examine the signaling pathways involved in mast cell activation.
RESULTS:
IFNγ-producing mast cells were closely aligned with the recruitment of CD8 + T cells in the early phase of vitiligo skin. sSCF released by KCs through stress-enhanced MMP9-dependent proteolytic cleavage recruited mast cells into sites of inflamed skin (Perilesion vs . lesion, 13.00 ± 4.00/high-power fields [HPF] vs . 26.60 ± 5.72/HPF, P <0.05). Moreover, IFNγ-producing mast cells were also observed in mouse tail skin following challenge with Tyrp-2 180 (0 h vs . 48 h post-recall, 0/HPF vs . 3.80 ± 1.92/HPF, P <0.05). The IFNγ + mast cell and CD8 + T cell counts were lower in the skin of MrgB2 -/- mice than in those of wild-type mice (WT vs . KO 48 h post-recall, 4.20 ± 0.84/HPF vs . 0.80 ± 0.84/HPF, P <0.05).
CONCLUSION
Mast cells activated by MrgX2 serve as a local IFNγ producer that bridges between innate and adaptive immune responses against MCs in early vitiligo. Targeting MrgX2-mediated mast cell activation may represent a new strategy for treating vitiligo.
Vitiligo/metabolism*
;
Mast Cells/immunology*
;
Animals
;
Interferon-gamma/metabolism*
;
Mice
;
Humans
;
Melanocytes/metabolism*
;
Receptors, G-Protein-Coupled/genetics*
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Male
;
Female
;
Matrix Metalloproteinase 9/metabolism*
;
Stem Cell Factor/metabolism*
2.Effect of Evodiamine on immune function of allergic rhinitis rats by regulating CCL2/CCR2 signaling pathway.
Xiaoli WANG ; Wei LI ; Shan ZHU ; Xingchan SHI ; Wei CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):300-307
Objective To explore the effect of Evodiamine (Evo) on the immune function of allergic rhinitis (AR) rats and the regulatory mechanism on C-C motif chemokine ligand 2 (CCL2)/ C-C motif chemokine receptor 2 (CCR2) pathway. Methods The related targets of Evo-AR-immune function were screened by network pharmacology, and the protein interaction network diagram of intersecting targets was constructed. The AR rat model was established by ovalbumin (OVA) combined with aluminium hydroxide, and the rats were divided into six groups: a normal control (NC) group, a model group, a Loratadine (LOR) group, an Evodiamine low dose (Evo-L) group, a Evodiamine high dose (Evo-H) groups, and an Evo-H combined with CCL2 group. After the last administration, the symptoms of rats in each group were scored; ELISA was applied to detect the levels of histamine, immunoglobulin E (IgE), interleukin 4 (IL-4), IL-13 and interferon γ (IFN-γ); Diff-Quick staining solution was applied to detecte the number of cells in the nasal lavage fluid (NALF); hematoxylin eosin (HE) staining was applied to observe the pathological changes of nasal mucosa tissue; real-time quantitative PCR was applied to detect the levels of CCL2 and CCR2 mRNA in tissue; Western blot was applied to detect the expression levels of CCL2, CCR2 and CXC motif chemokine ligand 8 (CXCL8) proteins in nasal mucosa. Results There were eight intersection targets of EVo-AR-immune function, and protein interaction network diagram showed that CXCL8 was the core target. Compared with the NC group, the score of nasal symptoms, the levels of histamine, IgE, IL-4 and IL-13, the numbers of eosinophil, macrophages, neutrophils, lymphocytes and total cells, the mRNA and protein expression levels of CCL2 and CCR2, and the expression of CXCL8 protein in the model group were increased, while the level of IFN-γ was decreased. Compared with the model group, the score of nasal symptoms, the levels of histamine, IgE, IL-4 and IL-13, the numbers of eosinophil, macrophages, neutrophils, lymphocytes and total cells, the mRNA and protein expression levels of CCL2 and CCR2, and the expression of CXCL8 protein in LOR and Evo groups were decreased, while the level of IFN-γ was increased. Further use of CCL2 recombinant protein for compensatory experiments revealed that the improvement effect of Evo on immune function in AR rats was reversed by CCL2. Conclusion Evo can improve the immune function of AR rats, and its mechanism may be related to the inhibition of the CCL2/CCR2 pathway.
Animals
;
Receptors, CCR2/immunology*
;
Signal Transduction/drug effects*
;
Chemokine CCL2/immunology*
;
Rats
;
Rhinitis, Allergic/metabolism*
;
Immunoglobulin E/blood*
;
Quinazolines/pharmacology*
;
Male
;
Interferon-gamma
;
Rats, Sprague-Dawley
;
Interleukin-13
;
Histamine
;
Interleukin-4/immunology*
;
Disease Models, Animal
3.miR-582-5p regulates DUSP1 to modulate Mycobacterium tuberculosis infection in macrophages.
Yanming SUN ; Fengxia LIU ; Tingting CHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):406-412
Objective To explore the effect of miR-582-5p on Mycobacterium tuberculosis (Mtb)-infected macrophages by regulating dual specificity phosphatase 1 (DUSP1). Methods THP-1 macrophages were divided into six groups: control group, Mtb group, inhibitor-NC group, miR-582-5p inhibitor group, miR-582-5p inhibitor+si-NC group, and miR-582-5p inhibitor+si-DUSP1 group. QRT-PCR was applied to detect the gene expression of miR-582-5p and DUSP1 in cells. ELISA kit was used to detect the levels of interferon γ (IFN-γ), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β). CCK-8 method was applied to detect cell proliferation. Flow cytometry was applied to detect cell apoptosis rate. Western blot analysis was used to measure the protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X (BAX), and cleaved-caspase 3 (c-caspase-3) in cells. In addition, the target relationship between miR-582-5p and DUSP1 was verified. Results Compared with the control group, the expression of miR-582-5p, levels of IFN-γ, IL-6, TNF-α, IL-1β, bacterial load and OD450 values (24 h, 48 h), and the protein expression of Bcl2 in macrophages were higher in the Mtb group, while the mRNA expression of DUSP1, apoptosis rate, and the protein expression levels of c-caspase-3, BAX and DUSP1 were lower. Compared with the Mtb group and the inhibitor-NC group, the above-mentioned indicators in the miR-582-5p inhibitor group were partially reversed. Down-regulation of DUSP1 expression partially reversed the inhibitory effect of down-regulation of miR-582-5p expression on Mtb-infected macrophages. Conclusion Inhibiting the expression of miR-582-5p can up-regulate DUSP1, thereby inhibiting the proliferation and inflammatory response of Mtb-infected macrophages and promoting cell apoptosis.
Humans
;
Macrophages/metabolism*
;
Dual Specificity Phosphatase 1/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Tuberculosis/microbiology*
;
Apoptosis/genetics*
;
THP-1 Cells
;
Cell Proliferation/genetics*
;
Interferon-gamma/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
4.The regulatory function of elevated interleukin 36γ to CD8+ T cell function in secondary fungal pneumonia patients with chronic obstructive pulmonary diseases.
Xiaoshan CUI ; Yinglan LI ; Tongxiu ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):637-643
Objectives To investigate interleukin 36γ (IL-36γ) expression, and analyze the influence of IL-36γ to CD8+ T cell activity in chronic obstructive pulmonary diseases (COPD) patients with secondary fungal pneumonia. Methods Peripheral blood was collected from 47 COPD patients, 39 COPD patients with secondary fungal pneumonia, and 20 controls. Bronchial alveolar lavage fluid (BALF) was isolated from 27 COPD patients with secondary fungal pneumonia. CD8+ T cells were purified. The levels of four IL-36 isoforms in plasma and BALF were measured by enzyme linked immunosorbent assay (ELISA). CD8+ T cells were stimulated with recombinant human IL-36γ. The levels of interferon γ(IFN-γ), tumor necrosis factor α(TNF-α), perforin and granzyme B in the cultured supernatants were measured by ELISA. Recombinant human IL-36γ-stimulated CD8+ T cells were co-cultured with NCI-H1882 cells in either direct cell-to-cell contact or TranswellTM manner. The levels of IFN-γ, TNF-α, and lactate dehydrogenase in the cultured supernatants were assessed. The percentage of target cell death was calculated. Results Plasma IL-36α, IL-36β, and IL-36γ levels were significantly elevated in both COPD group and COPD with secondary fungal pneumonia group compared with those in control group. However, only plasma IL-36γ level was higher in COPD with secondary fungal pneumonia group than that in COPD group [(200.11±99.95)pg/mL vs (53.03±87.18)pg/mL, P=0.023]. There was no remarkable difference in plasma IL-36 receptor antagonist level among three groups. IL-36γ level in BALF from infectious site was higher than that from non-infectious site in COPD with secondary fungal pneumonia group [(305.82±59.60)pg/mL vs (251.93±76.01)pg/mL, P=0.011]. IL-36γ stimulation enhanced IFN-γ, TNF-α, perforin and granzyme B secreted by CD8+ T cells. When IL-36γ-stimulated CD8+ T cells were directly mixed with NCI-H1882 cells for co-culture, the percentage of cell death was increased [(16.06±3.67)% vs (11.47±2.36)%, P=0.002]. When using TranswellTM plate for non-contact co-culture, IL-36γ-stimulated CD8+ T cell-mediated death of NCI-H1882 cells showed no significant difference compared to that without stimulation [(4.77±0.78)% vs (4.99±0.92)%, P=0.554]. Conclusion IL-36γ level in plasma and infectious site is elevated in COPD patients with secondary fungal pneumonia, which enhances the cytotoxicity of CD8+ T cells in peripheral blood and infectious microenviroment.
Humans
;
Pulmonary Disease, Chronic Obstructive/complications*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Male
;
Female
;
Aged
;
Middle Aged
;
Interferon-gamma/metabolism*
;
Interleukin-1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Lung Diseases, Fungal/complications*
;
Bronchoalveolar Lavage Fluid/chemistry*
;
Perforin/metabolism*
;
Pneumonia/immunology*
;
Granzymes/metabolism*
5.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
6.Knocking Out DNMT1 Enhances the Inhibitory Effect of NK Cells on Acute Myeloid Leukemia.
Kun WU ; Jia-Li HUANG ; Shen-Ju CHENG ; Yan-Hong LI ; Yun ZENG ; Ming-Xia SHI
Journal of Experimental Hematology 2025;33(3):653-659
OBJECTIVE:
To explore the effect and mechanism of DNA methyltransferase 1 (DNMT1) knockout on the inhibition of acute myeloid leukemia (AML) by natural killer (NK) cells.
METHODS:
The peripheral blood NK cells of AML patients and controls were collected, and the mRNA and protein level of DNMT1 were measured by PCR and Western blot, respectively. The DNMT1 knockout mice were constructed to obtain NKDNMT1-/- cells. The NK cells were stimulated with interleukin (IL)-12, IL-15, and IL-18 to construct memory NK cells, and then the interferon-γ (IFN-γ) levels were measured by ELISA. After co-culturing with memory NK cells and HL60 cells, the killing effect of NKDNMT1-/- cells on HL60 cells was detected by LDH assay. Then, the HL60 cell apoptosis and NK cell NKG2D level were measured by flow cytometry. The perforin and granzyme B protein levels of NK cells were measured by Western blot. The AML model mice were constructed by injecting HL60 cells into the tail vein, meanwhile, memory NK cells were also injected, and then the mouse weights, CD33 positive rates, and survival time were detected.
RESULTS:
The mRNA and protein levels of DNMT1 in NK cells of AML patients were significantly higher than those in the control group (both P < 0.01), while the IFN-γ level induced by interleukin was significantly lower than that in the control group (P < 0.05). Compared with NKDNMT1+/+ cells, the ability of NKDNMT1-/- cells to secrete IFN-γ after interleukin stimulation was significantly increased (P < 0.05). The killing and apoptosis-inducing effects of NKDNMT1-/- cells on HL60 cells were significantly stronger than those of NKDNMT1+/+ cells (both P < 0.05). The NKG2D level and expression of perforin and granzyme B of NKDNMT1-/- cells were significantly increased compared with NKDNMT1+/+ cells (all P < 0.05). Compared with AML mice injected with NKDNMT1+/+ cells, AML mice injected with NKDNMT1-/- cells showed significantly increased body weight, decreased CD33 positive rate, and prolonged survival time (all P < 0.05).
CONCLUSION
Knocking out DNMT1 can enhance the inhibitory effect of NK cells on AML, which may be related to enhancing NK cell memory function.
Killer Cells, Natural/metabolism*
;
Animals
;
Leukemia, Myeloid, Acute
;
Humans
;
DNA (Cytosine-5-)-Methyltransferase 1
;
Mice
;
Mice, Knockout
;
HL-60 Cells
;
Apoptosis
;
Interferon-gamma/metabolism*
;
Granzymes/metabolism*
;
Perforin/metabolism*
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
7.The Expression and Significance of PD-1, Th1, Th2, and Th17 Cytokines in Multiple Myeloma.
Di LIU ; Qian CHEN ; Ling LI ; Hua-Xin JIANG
Journal of Experimental Hematology 2025;33(5):1366-1373
OBJECTIVE:
To explore the expression and clinical significance of programmed death receptor 1 (PD-1), Th1, Th2, and Th17 cytokines in multiple myeloma (MM).
METHODS:
A total of 76 MM patients treated in the Tengzhou Central People's Hospital from May 2021 to May 2023 were collected as MM group, and 48 healthy individuals who underwent physical examination during the same period were included as control group. The expression of PD-1 on the surface of CD4+ and CD8+ T cells and the levels of serum Th1 cytokines [interleukin (IL) -2, interferon γ (IFN-γ), tumor necrosis factor α (TNF-α)], Th2 cytokines (IL-4, IL-6, IL-10) and Th17 cytokines (IL-17) were detected in the two groups. Spearman correlation was used to examine the relationship between PD-1, Th1, Th2 and Th17 cytokines and clinical stage and immune typing of MM patients. Multivariate logistic regression analysis was used to analyze the related factors affecting the efficacy of chemotherapy in MM patients, and the factors were tested for multicollinearity. Receiver operating characteristic (ROC) curve was drawn to analyze the predictive value of PD-1, Th1, Th2 and Th17 cytokines in chemotherapy efficacy of MM patients.
RESULTS:
The levels of CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 in the MM group were higher than those in the control group, while the levels of IL-2, IFN-γ, and TNF-α were lower (all P <0.001). The levels of CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 in R-ISS stage III patients were higher than those in stage II and I patients, and the levels in stage II patients were higher than those in stage I patients (all P <0.05). The IL-2 level in R-ISS stage III patients was lower than that in stage II and I patients, and IL-2 level in R-ISS stage II patients was lower than that in stage I patients (all P <0.05). The levels of CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 in IgG patients were higher than those in IgA, light chain, and non secretory patients, while the level of IL-2 was lower (all P <0.05). Correlation analysis showed that CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 were positively correlated with R-ISS staging in MM patients (r =0.623, 0.635, 0.728, 0.330, 0.742, 0.412), and negatively correlated with immune classification (r =-0.664, -0.756, -0.642, -0.479, -0.613, -0.323). IL-2 was negatively correlated with R-ISS staging in MM patients (r =-0.280), and positively correlated with immune classification (r =0.483). The levels of CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10, and IL-17 in the non-remission group were higher than those in the remission group, while the level of IL-2 was lower (all P <0.001). Multivariate logistic regression analysis showed that the increased CD4+T PD-1, CD8+T PD-1, IL-4, IL-6, IL-10 and IL-17 were risk factors for the efficacy of chemotherapy in MM patients (OR >1, P <0.05), while the increased IL-2 was a protective factor (OR < 1, P <0.05). The results of multicollinearity test showed that the tolerance of the seven factors included was between 0.714-0.885, and the variance inflation factor was between 1.130-1.400. There was no multicollinearity. The ROC curve analysis results showed that the area under the curve for the combined prediction of chemotherapy efficacy in MM patients by the above 7 factors was 0.942, with specificity of 0.741 and sensitivity of 0.909.
CONCLUSION
The expression levels of PD-1 on the surface of CD4+ and CD8+ T cells and serum Th2 and Th17 cytokines in MM patients are high, while Th1 cytokines are low. PD-1, Th1, Th2, and Th17 cytokines are related to clinical stage and immune classification of MM patients. The combined detection of these indicators can help predict the chemotherapy efficacy of MM patients.
Humans
;
Programmed Cell Death 1 Receptor/metabolism*
;
Multiple Myeloma/blood*
;
Cytokines/metabolism*
;
Th17 Cells/metabolism*
;
Th1 Cells/metabolism*
;
Th2 Cells/metabolism*
;
Female
;
Male
;
Interleukin-10
;
Interferon-gamma
;
Middle Aged
;
Interleukin-17
;
Interleukin-2
;
Interleukin-4
;
Tumor Necrosis Factor-alpha
;
Interleukin-6
;
Aged
8.Therapeutic effects of inulin-type oligosaccharides of Morinda officinalis on Streptococcus pneumoniae meningitis in mice.
Zehan LI ; Meng LIANG ; Gencheng HAN ; Xuewu ZHANG
Journal of Southern Medical University 2025;45(3):577-586
OBJECTIVES:
To investigate the therapeutic effects of inulin-type oligosaccharides of Morinda officinalis (IOMO) in a murine model of Streptococcus pneumoniae meningitis (SPM) and explore its possible mechanisms.
METHODS:
A total of 120 male C57BL/6J mice were randomly assigned into Sham, SPM+Saline, SPM+IOMO (25 mg/kg), and SPM+IOMO (50 mg/kg) groups. After modeling, the mice received daily gavage of saline or IOMO at the indicated doses for 7 consecutive days, and the changes in symptom scores and mortality of the mice were monitored. Brain pathology and neuronal injury of the mice were assessed using HE and Nissl staining, and qRT-PCR was performed to detect mRNA levels of the inflammatory mediators. Brain edema and blood-brain barrier (BBB) permeability of the mice were evaluated by measuring brain water content and Evans blue (EB) staining; Western blotting was used to analyze the expressions of BBB-associated proteins, and flow cytometry was employed to detect IFN‑γ expression level in the infiltrating lymphocytes. Open-field test (OFT) and novel object recognition test (NORT) were conducted to assess learning and memory ability of the mice on day 21 after modeling.
RESULTS:
IOMO treatment at 50 mg/kg significantly reduced the symptom scores and mortality rate of SPM mice, alleviated brain damage, and downregulated mRNA levels of IL-6, TNF‑α, IL-1β, IL-18, IFN‑γ, iNOS, NLRP3, ASC, caspase-1 and GSDMD in the brain tissue. IOMO treatment also decreased brain water content and EB leakage, upregulated VE-cadherin and occludin expressions, and suppressed AQP4, iNOS, and IFN‑γ levels of the mice. IOMO-treated mice exhibited improved learning and memory compared with the saline-treated mice on day 21 after SPM modeling.
CONCLUSIONS
IOMO alleviates SPM symptoms, reduces mortality, and mitigates cognitive deficits in mice possibly by suppressing cerebral inflammation and protecting BBB functions.
Animals
;
Morinda/chemistry*
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Meningitis, Pneumococcal/drug therapy*
;
Blood-Brain Barrier/metabolism*
;
Inulin/therapeutic use*
;
Oligosaccharides/therapeutic use*
;
Disease Models, Animal
;
Interferon-gamma/metabolism*
;
Brain Edema
9.Loss of tricellular tight junction tricellulin leads to hyposalivation in Sjögren's syndrome.
Xiangdi MAO ; Haibing LI ; Sainan MIN ; Jiazeng SU ; Pan WEI ; Yan ZHANG ; Qihua HE ; Liling WU ; Guangyan YU ; Xin CONG
International Journal of Oral Science 2025;17(1):22-22
Tricellulin, a key tricellular tight junction (TJ) protein, is essential for maintaining the barrier integrity of acinar epithelia against macromolecular passage in salivary glands. This study aims to explore the role and regulatory mechanism of tricellulin in the development of salivary gland hypofunction in Sjögren's syndrome (SS). Employing a multifaceted approach involving patient biopsies, non-obese diabetic (NOD) mice as a SS model, salivary gland acinar cell-specific tricellulin conditional knockout (TricCKO) mice, and IFN-γ-stimulated salivary gland epithelial cells, we investigated the role of tricellulin in SS-related hyposalivation. Our data revealed diminished levels of tricellulin in salivary glands of SS patients. Similarly, NOD mice displayed a reduction in tricellulin expression from the onset of the disease, concomitant with hyposecretion and an increase in salivary albumin content. Consistent with these findings, TricCKO mice exhibited both hyposecretion and leakage of macromolecular tracers when compared to control animals. Mechanistically, the JAK/STAT1/miR-145 axis was identified as mediating the IFN-γ-induced downregulation of tricellulin. Treatment with AT1001, a TJ sealer, ameliorated epithelial barrier dysfunction, restored tricellulin expression, and consequently alleviated hyposalivation in NOD mice. Importantly, treatment with miR-145 antagomir to specifically recover the expression of tricellulin in NOD mice significantly alleviated hyposalivation and macromolecular leakage. Collectively, we identified that tricellulin deficiency in salivary glands contributed to hyposalivation in SS. Our findings highlight tricellulin as a potential therapeutic target for hyposecretion, particularly in the context of reinforcing epithelial barrier function through preventing leakage of macromolecules in salivary glands.
Sjogren's Syndrome/complications*
;
Animals
;
Xerostomia/etiology*
;
Mice
;
Mice, Inbred NOD
;
MARVEL Domain Containing 2 Protein/metabolism*
;
Humans
;
Mice, Knockout
;
Disease Models, Animal
;
Interferon-gamma
;
Salivary Glands/metabolism*
;
Tight Junctions/metabolism*
;
MicroRNAs/metabolism*
;
Female
10.A preliminary study on the role of V-domain Ig suppressor of T cell activation in juvenile idiopathic arthritis.
Li-Ping XIAO ; Li-Na ZHOU ; Jun-Jie CHEN ; Yan ZHANG ; Xue-Mei TANG ; Juan ZHOU
Chinese Journal of Contemporary Pediatrics 2023;25(3):272-277
OBJECTIVES:
To study the expression of V-domain Ig suppressor of T cell activation (VISTA) in peripheral blood of children with juvenile idiopathic arthritis (JIA) and its role in the pathogenesis of JIA.
METHODS:
In this prospective study, peripheral blood was collected from 47 children with different subtypes of JIA and 10 healthy children. Flow cytometry was used to measure the expression levels of VISTA, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) on CD14+ mononuclear cells, CD4+ T lymphocytes, and CD8+ T lymphocytes.
RESULTS:
The children with JIA had a significantly lower expression level of VISTA than the healthy children (P<0.05). There was a significant difference in the expression of VISTA between the children with different subtypes of JIA, with the lowest expression level in those with systemic JIA (P<0.05). There was also a significant difference in the expression of VISTA between different immune cells, with a significantly higher expression level on the surface of monocytes (P<0.05). Correlation analysis showed that VISTA was negatively correlated with the expression of IFN-γ and TNF-α on CD4+ T cells (r=-0.436 and -0.382 respectively, P<0.05), CD8+ T cells (r=-0.348 and -0.487 respectively, P<0.05), and CD14+ mononuclear cells (r=-0.582 and -0.603 respectively, P<0.05).
CONCLUSIONS
The insufficient expression of VISTA may be associated with the pathogenesis of JIA, and enhancing the immunomodulatory effect of VISTA might be one option for the treatment of JIA in the future.
Child
;
Humans
;
Arthritis, Juvenile/pathology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
CD8-Positive T-Lymphocytes
;
Prospective Studies
;
Interferon-gamma/metabolism*

Result Analysis
Print
Save
E-mail