1.Infection-stimulated anemia results primarily from interferon gamma-dependent, signal transducer and activator of transcription 1-independent red cell loss.
Zheng WANG ; Dong-Xia ZHANG ; Qi ZHAO
Chinese Medical Journal 2015;128(7):948-955
BACKGROUNDAlthough the onset of anemia during infectious disease is commonly correlated with production of inflammatory cytokines, the mechanisms by which cytokines induce anemia are poorly defined. This study focused on the mechanism research.
METHODSDifferent types of mice were infected perorally with Toxoplasma gondii strain ME49. At the indicated times, samples from each mouse were harvested, processed, and analyzed individually. Blood samples were analyzed using a Coulter Counter and red blood cell (RBC) survival was measured by biotinylation. Levels of tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and inducible protein 10 (IP-10) mRNA in liver tissue were measured by real-time polymerase chain reaction.
RESULTST. gondii-infected mice exhibited anemia due to a decrease in both erythropoiesis and survival time of RBC in the circulation (P < 0.02). In addition, infection-stimulated anemia was associated with fecal occult, supporting previous literature that hemorrhage is a consequence of T. gondii infection in mice. Infection-induced anemia was abolished in interferon gamma (IFNγ) and IFNγ receptor deficient mice (P < 0.05) but was still evident in mice lacking TNF-α, iNOS, phagocyte NADPH oxidase or IP-10 (P < 0.02). Neither signal transducer and activator of transcription 1 (STAT1) deficient mice nor 129S6 controls exhibited decreased erythropoiesis, but rather suffered from an anemia resulting solely from increased loss of circulating RBC.
CONCLUSIONSInfection-stimulated decrease in erythropoiesis and losses of RBC have distinct mechanistic bases. These results show that during T. gondii infection, IFNγ is responsible for an anemia that results from both a decrease in erythropoiesis and a STAT1 independent loss of circulating RBC.
Anemia ; genetics ; metabolism ; Animals ; Erythrocytes ; pathology ; Interferon-gamma ; metabolism ; Male ; Mice ; Mice, Knockout ; Nitric Oxide Synthase Type II ; genetics ; metabolism ; Receptors, Interferon ; genetics ; metabolism ; STAT1 Transcription Factor ; genetics ; metabolism ; Toxoplasma ; pathogenicity ; Tumor Necrosis Factor-alpha ; genetics ; metabolism
2.Partial purification and characterization of a novel murine factor that augments the expression of class I MHC antigens on tumor cells.
Experimental & Molecular Medicine 1998;30(2):93-99
A soluble factor which augments the expression of major histocompatibility complex class I (MHC I) antigens on a number of murine tumor cell lines, has been isolated from the culture supernatants of mixed lymphocyte reaction of spleen cells derived from C57B1/6, Balb/c and Swiss mice. The factor, termed MHC-augmenting factor (MHC-AF) has been partially purified by Sephadex G-100 column chromatography and reverse phase HPLC. MHC-AF activity is associated with an 18 kDa molecule. MHC-AF activity was resistant to pH 2.0 treatment and partially purified MHC-AF preparations did not have any activity in L929 cell/vesicular stomatitis virus (VSV) interferon bioassay system. Antibodies to IFN-gamma did not block the activity of MHC-AF. These results indicate that a MHC-AF distinct from IFN-gamma, is produced by mouse spleen cells undergoing a mixed lymphocyte reaction.
Animal
;
Antibodies/pharmacology
;
Chymotrypsin/metabolism
;
Chymotrypsin/chemistry
;
Comparative Study
;
Concanavalin A/pharmacology
;
Heat
;
Histocompatibility Antigens Class I/metabolism*
;
Histocompatibility Antigens Class I/drug effects
;
Interferon Type II/pharmacology
;
Interferon Type II/metabolism
;
Interferon Type II/immunology
;
Lymphocytes/physiology
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Proteins/pharmacology*
;
Proteins/metabolism
;
Proteins/isolation & purification*
;
Spleen/cytology
;
Trypsin/metabolism
;
Trypsin/chemistry
;
Tumor Cells, Cultured/immunology
;
Tumor Cells, Cultured/drug effects
3.Cytokine Expression of Microscopic Colitis Including Interleukin-17.
Eunkyoung PARK ; Young Sook PARK ; Dae Rim PARK ; Sung Ae JUNG ; Dong Soo HAN ; Byung Ik JANG ; Young Ho KIM ; Won Ho KIM ; Yun Ju JO ; Ki Ho LEE ; Won Mi LEE ; Eun Kyung KIM ; Hae Soo KOO
Gut and Liver 2015;9(3):381-387
BACKGROUND/AIMS: Microscopic colitis is characterized by chronic watery diarrhea with specific pathological changes that can be diagnosed by microscopic examination. We performed immunohistochemical analysis of proinflammatory cytokines to investigate the pathogenic mechanism of microscopic colitis. METHODS: This study consisted of six patients with lymphocytic colitis, six patients with collagenous colitis, and six patients with functional diarrhea but normal pathology. We performed an immunohistochemical analysis of the colonic mucosal biopsies to assess the expression of cyclo-oxygenase-2, interleukin-17, nuclear factor-kappaB, interferon-gamma, inducible nitric oxide synthase, and tumor necrosis factor-alpha. We compared the quantity score of immunohistochemical staining among the groups. RESULTS: The microscopic colitis group showed significantly higher expression of cyclo-oxygenase-2, interleukin-17, nuclear factor-kappaB, and interferon-gamma compared with the control group. Cytokine expression was similar between collagenous colitis and lymphocytic colitis. However, the expression of cyclo-oxygenase-2 was higher in collagenous colitis. CONCLUSIONS: Proinflammatory cytokines, including interleukin-17 and interferon-gamma, are highly expressed in microscopic colitis. The expression of cyclo-oxygenase-2 was higher in collagenous colitis than in lymphocytic colitis. This study is the first on interleukin-17 expression in microscopic colitis patients.
Biopsy
;
Colitis, Microscopic/*metabolism
;
Colon/pathology
;
Cyclooxygenase 2/*metabolism
;
Cytokines/metabolism
;
Diarrhea/metabolism
;
Humans
;
Interferon-gamma/metabolism
;
Interleukin-17/*metabolism
;
Intestinal Mucosa/pathology
;
NF-kappa B/metabolism
;
Nitric Oxide Synthase Type II/*metabolism
;
Tumor Necrosis Factor-alpha/metabolism
4.Induction of ICAM-1 and HLA-DR expression by IFN-gamma in malignant melanoma cell lines.
Joo Deuk KIM ; Jung Lim LEE ; Jeon Han PARK ; Jae Myun LEE ; Yeon Hyang KIM ; Se Jong KIM
Yonsei Medical Journal 1995;36(1):15-25
Two human malignant melanoma cell lines, Malme-3M and SK-Mel-28, were analyzed for their ability to induce the expression of intercellular adhesion molecule 1 (ICAM-1) and human leukocyte antigen (HLA)-DR molecules on their cell surfaces as well as at the transcriptional level before and after treatment with interferon (IFN)-gamma. Both cell lines demonstrated a high percentage(> 99%) of ICAM-1 expression regardless of IFN-gamma treatment. Before IFN-gamma treatment, Malme-3M cells barely expressed HLA-DR molecules (< 2%) and SK-Mel-28 cells demonstrated a relatively high percentage(> 50%) of HLA-DR expression. Both cell lines displayed elevated levels of HLA-DR expression in a time dependent manner after IFN-gamma treatment. However, these two cell lines have been shown to respond differentially to IFN-gamma. The molecular mechanism underlying such a differential behavior was investigated, and HLA-DR gene regulation was studied at the transcriptional level. Treatment with IFN-gamma led to the steady-state mRNA augmentation of the HLR-DR gene. The HLA-DRA mRNA augmentation was similar in both cell lines, whereas in Malme-3M, IFN-gamma did not augment the rate of transcription of the HLA-DRB gene as much as in SK-Mel-28. Data from this study established the fact that the melanoma cell lines displayed a differential susceptibility to IFN-gamma on the modulation of HLA-DR molecules, and this modulation was transcriptionally regulated.
Genes, MHC Class II
;
HLA-DR Antigens/*metabolism
;
Human
;
Intercellular Adhesion Molecule-1/*metabolism
;
Interferon Type II/*pharmacology
;
Melanoma/*metabolism/pathology
;
Support, Non-U.S. Gov't
;
Transcription, Genetic
;
Tumor Cells, Cultured
5.Phagocytosis of serum-and IgG-opsonized zymos an particles induces apoptosis through superoxide but not nitric oxide in macrophage J774A.1.
Jun Sub KIM ; Hyeok Yil KWON ; Won Ho CHOI ; Chan Young JEON ; Jong Il KIM ; Jaebong KIM ; Jae Yong LEE ; Yong Sun KIM ; Jae Bong PARK
Experimental & Molecular Medicine 2003;35(3):211-221
Phagocytosis of serum- and IgG-opsonized zymosan (SOZ and IOZ, respectively) particles into J774A.1 macrophages induced apoptosis of the cells, accompanied by the expression of p21(WAF1), one of cyclin-dependent protein kinase (CDK) inhibitors. Furthermore, phagocytosis of SOZ and IOZ particles into macophages induced superoxide formation. Tat-superoxide dismutase (SOD), which is readily transduced into the cells using Tat-domain, protected the cells from the apoptosis induced by phagocytosis of SOZ and IOZ particles. lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma) also caused the apoptosis of the cells. However, Tat-SOD could not protect the cells from LPS/IFN-gamma induced apoptosis, suggesting that apoptosis mechanisms involved are different from each other. In the present study, we determined the amounts of nitric oxide (NO) produced by SOZ, IOZ, and LPS/IFN-gamma, and found that SOZ and IOZ did not induce the generation of NO in macrophages, whereas LPS/ IFN-gamma did. The apoptosis due to phagocytosis was accompanied with the release of cytochrome c from mitochondrial membrane to cytosolic fraction. Furthermore, SOZ and IOZ induced the cleavage of procasapase-3 (35 kDa) to give rise to an active caspase-3 (20 kDa), which was blocked by Tat- SOD but not by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a scavenger of NO. On the other hand, LPS/IFN-gamma caused the activation of procaspase-3, which was blocked by PTIO but not by Tat-SOD. Taken together, phagocytosis of SOZ and IOZ particles induced apoptosis through superoxide but not NO in macrophages, accompanied with the release of cytochrome c and the activation of caspase-3.
Apoptosis/*immunology
;
Caspases/metabolism
;
Cell Line
;
Cyclins/biosynthesis
;
Cytochromes c/metabolism
;
Immunoglobulin G/*immunology
;
Interferon Type II/pharmacology
;
Lipopolysaccharides/pharmacology
;
Macrophages/*immunology/metabolism
;
Nitric Oxide/*metabolism
;
Opsonins/immunology
;
Phagocytosis/*physiology
;
Superoxide Dismutase/metabolism
;
Superoxides/*metabolism
;
Zymosan
6.Effect of fengshiqing on interleukin-4, gamma-interferon and chemotactic factor in rats with collagen type II.
Wei CAO ; Quan JIANG ; Zhen-yu WU
Chinese Journal of Integrated Traditional and Western Medicine 2009;29(12):1114-1116
OBJECTIVETo study the regulatory effect of fengshiqing (FSQ) on interleukin 4 (IL-4), gamma-interferon (gamma-IFN), macrophage inflammatory protein 1alpha (MIP-1alpha) and collagen type II antibody (C II Ab) in serum and supernatant of synovial cell culture of rat with rheumatoid arthritis (RA), to explore the mechanism of action of clearing-heat and activating blood method for treatment of RA.
METHODSRA rat model was induced by C II Ab combined with Freund's complete adjuvant, and the levels of IL-4, gamma-IFN, MIP-1alpha and C II Ab in serum and supernatant of synovial cell were detected by ELISA.
RESULTSAs compared with the normal group, serum level of C II Ab in the model group was significantly higher (P < 0.01), serum and supernatant contents of IL-4 on the 14th and 28th day of modeling were lower and those of gamma-IFN and MIP-1alpha were higher, the difference showed statistical significance (P < 0.05 or P < 0.01). After being treated with FSQ and IL-4 contents in serum and supernatant as well as MIP-1alpha in supernatant restored on the 14th day (P < 0.05 or P < 0.01), while all the indexes restored on the 28th day.
CONCLUSIONFSQ could evidently up-regulate the level of IL-4 and down-regulate that of MIP-1alpha in serum and local synovial membrane in RA rats, and shows a suppressive trend of gamma-IFN, so as to maintain the Th1/Th2 equilibrium, suppress the cellular and humoral immune response in the local synovial membrane, and alleviate the chronic changes of arthritis, synovitis and vasculitis.
Animals ; Arthritis, Rheumatoid ; metabolism ; Chemokine CCL3 ; metabolism ; Collagen Type II ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Female ; Interferon-gamma ; metabolism ; Interleukin-4 ; metabolism ; Male ; Rats ; Rats, Wistar ; Th1-Th2 Balance
7.Interferon regulatory factor-1 exerts inhibitory effect on neointimal formation after vascular injury.
Zhen LI ; Zhong-gao WANG ; Ce BIAN ; Xiao-dong CHEN ; Jian-wen LI ; Xiu CHEN ; Bing HAN ; Gao-feng HOU ; Jian CHU ; Qi CUI
Chinese Medical Sciences Journal 2009;24(2):91-96
OBJECTIVETo investigate the effect of interferon regulatory factors (IRFs) on neointimal formation after vascular injury in the mouse, and its possible mechanism.
METHODSVascular injury was induced by polyethylene cuff placement around the left femoral artery of IRF-1-deficient mice and C57BL/6J mice. The mRNA expressions of IRF-1, IRF-2, angiotensin II type 2 (AT2) receptor, interleukin-1 beta converting enzyme (ICE), inducible nitric oxide synthase (iNOS) were detected by RT-PCR and immunohistochemical staining.
RESULTSNeointimal formation after vascular injury was significantly greater in IRF-1-deficient mice than that in C57BL/6J mice (P<0.05). In contrast, TUNEL-positive nuclei to total nuclei in the neointima and media in vascular smooth muscle cell (VSMC) in the injured artery significantly attenuated in IRF-1-deficient mice compared to C57BL/6J mice (P<0.05). The expressions of AT2 receptor as well as pro-apoptotic genes such as ICE and iNOS in C57BL/6J mice were up-regulated in response to vascular injury, but this upregulation was attenuated in IRF-1-deficient mice.
CONCLUSIONSOur results suggest that IRF-1 induces VSMC apoptosis and inhibits neointimal formation after vascular injury at least partly due to the upregulation of AT2 receptor, ICE and iNOS expressions. These results indicate that IRF-1 exerts an inhibitory effect on neointimal formation through the induction of apoptosis in VSMCs.
Animals ; Apoptosis ; physiology ; Caspase 1 ; genetics ; metabolism ; Femoral Artery ; anatomy & histology ; pathology ; Interferon Regulatory Factor-1 ; genetics ; metabolism ; Interferon Regulatory Factor-2 ; genetics ; metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Muscle, Smooth, Vascular ; cytology ; metabolism ; pathology ; Nitric Oxide Synthase Type II ; genetics ; metabolism ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; Receptor, Angiotensin, Type 2 ; genetics ; metabolism ; Tunica Intima ; pathology ; physiology
8.Human Brain Astrocytes Mediate TRAIL-mediated Apoptosis after Treatment with IFN-gamma.
Jeonggi LEE ; Jeon Soo SHIN ; In Hong CHOI
Yonsei Medical Journal 2006;47(3):354-358
TNF-related apoptosis inducing ligand (TRAIL) expressions were studied in primary human brain astrocytes in response to pro-inflammatory cytokines. When astrocytes were treated with IL-1beta TNF-alphaor IFN-gamma TRAIL was induced in cultured fetal astrocytes. In particular, IFN-gammainduced the highest levels of TRAIL in cultured astrocytes. When astrocytes were pre-reated with IFN-gamma they induced apoptosis in TRAIL-sensitive Peer cells. Our results suggest that IFN-gamma modulates the expression of TRAIL in astrocytes, which may enhance cytotoxic sensitivity of infiltrating immune cells or brain cells other than astrocytes during inflammation of brain.
Tumor Necrosis Factor-alpha/genetics/*metabolism
;
TNF-Related Apoptosis-Inducing Ligand
;
Membrane Glycoproteins/genetics/*metabolism
;
Interferon Type II/*pharmacology
;
Humans
;
Cells, Cultured
;
Astrocytes/*cytology/drug effects/metabolism
;
Apoptosis Regulatory Proteins/genetics/*metabolism
;
Apoptosis/*drug effects/physiology
;
Antineoplastic Agents/*pharmacology
9.Human Brain Astrocytes Mediate TRAIL-mediated Apoptosis after Treatment with IFN-gamma.
Jeonggi LEE ; Jeon Soo SHIN ; In Hong CHOI
Yonsei Medical Journal 2006;47(3):354-358
TNF-related apoptosis inducing ligand (TRAIL) expressions were studied in primary human brain astrocytes in response to pro-inflammatory cytokines. When astrocytes were treated with IL-1beta TNF-alphaor IFN-gamma TRAIL was induced in cultured fetal astrocytes. In particular, IFN-gammainduced the highest levels of TRAIL in cultured astrocytes. When astrocytes were pre-reated with IFN-gamma they induced apoptosis in TRAIL-sensitive Peer cells. Our results suggest that IFN-gamma modulates the expression of TRAIL in astrocytes, which may enhance cytotoxic sensitivity of infiltrating immune cells or brain cells other than astrocytes during inflammation of brain.
Tumor Necrosis Factor-alpha/genetics/*metabolism
;
TNF-Related Apoptosis-Inducing Ligand
;
Membrane Glycoproteins/genetics/*metabolism
;
Interferon Type II/*pharmacology
;
Humans
;
Cells, Cultured
;
Astrocytes/*cytology/drug effects/metabolism
;
Apoptosis Regulatory Proteins/genetics/*metabolism
;
Apoptosis/*drug effects/physiology
;
Antineoplastic Agents/*pharmacology
10.Receptor activator of NF-kappaB ligand enhances the activity of macrophages as antigen presenting cells.
Hyewon PARK ; Ok Jin PARK ; Jieun SHIN ; Youngnim CHOI
Experimental & Molecular Medicine 2005;37(6):524-532
Receptor activator of NFkappaB ligand (RANKL) is known as a key regulator of osteoclastogenesis. However, the fact that fibroblasts and periodontal ligament cells express RANKL in response to bacterial substances, suggests that RANKL may have evolved as a part of the immunity to infection. As RANKL increases the survival and activity of dendritic cells, it may have similar effects on macrophages. To address this issue, we studied the effect of RANKL on various functions of macrophages using mouse bone marrow derived macrophages. RANKL enhanced the survival of macrophages and up-regulated the expression of CD86. RANKL-treated macrophages showed increased allogeneic T cell activation and phagocytic activity compared to control cells. In addition, RANKL increased the expression of TNFalpha, MCP-1, and IL-6 but not of IL-10, IL-12, IFN-gamma, and iNOS. Collectively, RANKL augmented the activity of macrophages especially as antigen presenting cells, suggesting its new role in immune regulation.
Animals
;
Antigen-Presenting Cells/cytology/*drug effects/immunology/*metabolism
;
Antigens, CD86/metabolism
;
Carrier Proteins/*pharmacology
;
Cell Death/drug effects
;
Cell Survival/drug effects
;
Cells, Cultured
;
Cytokines/metabolism
;
Flow Cytometry
;
Histocompatibility Antigens Class II/metabolism
;
Inflammation Mediators
;
Interferon Type II/pharmacology
;
Lipopolysaccharides/pharmacology
;
Macrophages/cytology/*drug effects/immunology/*metabolism
;
Membrane Glycoproteins/*pharmacology
;
Mice
;
Mice, Inbred C57BL
;
Mice, Inbred ICR
;
Nitric Oxide Synthase Type II/metabolism
;
Phagocytosis/drug effects
;
Research Support, Non-U.S. Gov't
;
T-Lymphocytes/immunology/metabolism
;
Up-Regulation/drug effects/genetics