1.Phagocytosis of serum-and IgG-opsonized zymos an particles induces apoptosis through superoxide but not nitric oxide in macrophage J774A.1.
Jun Sub KIM ; Hyeok Yil KWON ; Won Ho CHOI ; Chan Young JEON ; Jong Il KIM ; Jaebong KIM ; Jae Yong LEE ; Yong Sun KIM ; Jae Bong PARK
Experimental & Molecular Medicine 2003;35(3):211-221
Phagocytosis of serum- and IgG-opsonized zymosan (SOZ and IOZ, respectively) particles into J774A.1 macrophages induced apoptosis of the cells, accompanied by the expression of p21(WAF1), one of cyclin-dependent protein kinase (CDK) inhibitors. Furthermore, phagocytosis of SOZ and IOZ particles into macophages induced superoxide formation. Tat-superoxide dismutase (SOD), which is readily transduced into the cells using Tat-domain, protected the cells from the apoptosis induced by phagocytosis of SOZ and IOZ particles. lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma) also caused the apoptosis of the cells. However, Tat-SOD could not protect the cells from LPS/IFN-gamma induced apoptosis, suggesting that apoptosis mechanisms involved are different from each other. In the present study, we determined the amounts of nitric oxide (NO) produced by SOZ, IOZ, and LPS/IFN-gamma, and found that SOZ and IOZ did not induce the generation of NO in macrophages, whereas LPS/ IFN-gamma did. The apoptosis due to phagocytosis was accompanied with the release of cytochrome c from mitochondrial membrane to cytosolic fraction. Furthermore, SOZ and IOZ induced the cleavage of procasapase-3 (35 kDa) to give rise to an active caspase-3 (20 kDa), which was blocked by Tat- SOD but not by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a scavenger of NO. On the other hand, LPS/IFN-gamma caused the activation of procaspase-3, which was blocked by PTIO but not by Tat-SOD. Taken together, phagocytosis of SOZ and IOZ particles induced apoptosis through superoxide but not NO in macrophages, accompanied with the release of cytochrome c and the activation of caspase-3.
Apoptosis/*immunology
;
Caspases/metabolism
;
Cell Line
;
Cyclins/biosynthesis
;
Cytochromes c/metabolism
;
Immunoglobulin G/*immunology
;
Interferon Type II/pharmacology
;
Lipopolysaccharides/pharmacology
;
Macrophages/*immunology/metabolism
;
Nitric Oxide/*metabolism
;
Opsonins/immunology
;
Phagocytosis/*physiology
;
Superoxide Dismutase/metabolism
;
Superoxides/*metabolism
;
Zymosan
2.Partial purification and characterization of a novel murine factor that augments the expression of class I MHC antigens on tumor cells.
Experimental & Molecular Medicine 1998;30(2):93-99
A soluble factor which augments the expression of major histocompatibility complex class I (MHC I) antigens on a number of murine tumor cell lines, has been isolated from the culture supernatants of mixed lymphocyte reaction of spleen cells derived from C57B1/6, Balb/c and Swiss mice. The factor, termed MHC-augmenting factor (MHC-AF) has been partially purified by Sephadex G-100 column chromatography and reverse phase HPLC. MHC-AF activity is associated with an 18 kDa molecule. MHC-AF activity was resistant to pH 2.0 treatment and partially purified MHC-AF preparations did not have any activity in L929 cell/vesicular stomatitis virus (VSV) interferon bioassay system. Antibodies to IFN-gamma did not block the activity of MHC-AF. These results indicate that a MHC-AF distinct from IFN-gamma, is produced by mouse spleen cells undergoing a mixed lymphocyte reaction.
Animal
;
Antibodies/pharmacology
;
Chymotrypsin/metabolism
;
Chymotrypsin/chemistry
;
Comparative Study
;
Concanavalin A/pharmacology
;
Heat
;
Histocompatibility Antigens Class I/metabolism*
;
Histocompatibility Antigens Class I/drug effects
;
Interferon Type II/pharmacology
;
Interferon Type II/metabolism
;
Interferon Type II/immunology
;
Lymphocytes/physiology
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Proteins/pharmacology*
;
Proteins/metabolism
;
Proteins/isolation & purification*
;
Spleen/cytology
;
Trypsin/metabolism
;
Trypsin/chemistry
;
Tumor Cells, Cultured/immunology
;
Tumor Cells, Cultured/drug effects
3.T cell phenotype and intracellular IFN-gamma production in peritoneal exudate cells and gut intraepithelial lymphocytes during acute Toxoplasma gondii infection in mice.
The Korean Journal of Parasitology 2002;40(3):119-129
Although there are many reports on the splenic (systemic) T cell response after Toxoplasma gondii infection, little information is available regarding the local T cell responses of peritoneal exudate cells (PEC) and gut intraepithelial lymphocytes (IEL) following peroral infection with bradyzoites. Mice were infected with 40 cysts of the 76K strain of T. gondii, and then sacrificed at days 0, 1, 4, 7 and 10 postinfection (PI). The cellular composition and T cell responses of PEC and IEL were analyzed. The total number of PEC and IEL per mouse increased after infection, but the ratio of increase was higher in IEL. Lymphocytes were the major component of both PEC and IEL. The relative percentages of PEC macrophages and neutrophils/eosinophils increased significantly at day 1 and 4 PI, whereas those of IEL did not change significantly. The percentage of PEC NK1.1 and gamma delta T cells peaked at day 4 PI (p < 0.0001), and CD4 and CD8 alpha T cells increased continuously after infection. The percentages of IEL CD8 alpha and gamma delta T cells decreased slightly at first, and then increased. CD4 and NK1.1 T cells of IEL did not change significantly after infection. IFN-gamma-producing PEC NK1.1 T cells increased significantly from day 1 PI, but the other T cell subsets produced IFN-gamma abundantly thereafter. The proportion of IEL IFN-gamma-producing CD8 alpha and gamma delta T cells increased significantly after infection, while IEL NK1.1 T cells had similar IFN-gamma production patterns. Taken together, CD4 T cells were the major phenotype and the important IFN-gamma-producing T cell subsets in PEC after oral infection with T. gondii, whereas CD8 alpha T cells had these roles in IEL. These results suggest that PEC and IEL comprise different cell differentials and T cell responses, and according to infection route these factors may contribute to the different cellular immune responses.
Acute Disease
;
Animals
;
Ascitic Fluid/cytology/*metabolism
;
Female
;
Interferon Type II/*biosynthesis
;
Intestinal Mucosa/cytology
;
Lymphocytes/*metabolism
;
Mice
;
Mice, Inbred C57BL
;
Support, Non-U.S. Gov't
;
T-Lymphocyte Subsets/*immunology
;
Toxoplasmosis/*immunology
4.Ovalbumin fused with diphtheria toxin protects mice from ovalbumin induced anaphylactic shock.
Bong Ki LEE ; Young Gun YOO ; Won Young LEE ; Chun Soo HONG ; Jae Ku PARK ; Jai Youl RO
Yonsei Medical Journal 2001;42(1):91-105
For those with allergy, vaccination with a specific allergen has often been used as a major therapeutic measure. However, the universal application of this technique in clinics have been restricted due to its low success rates and the risk of active systemic anaphylactic shock (ASAS). In this regard, we constructed a fusion protein (OVA-DT), ovalbumin (OVA) fused with diphtheria toxin protein (DT), which may exert a specific cytotoxicity to cells bearing OVA-specific IgE. Its therapeutic effect was evaluated in mice (BALB/c) sensitized with OVA (Os-mice). OVA challenges to the OVA-sensitized mice (Os-mice) caused ASAS to death within 30 min, but OVA-DT treatment afforded mice complete protection. When OVA-DT was treated to the Os-mice, none showed the signs of ASAS when re-challenged 48 h after the treatment. OVA-DT itself was not found to be toxic or allergenic in normal mice. The effect of OVA-DT on the biological functions of mast cells was also studied. Binding of OVA-DT to OVA-specific IgE bearing mast cells and the inhibition of histamine release from these cells were observed. In addition, OVA-DT treatment inhibited the proliferation of OVA-specific B cells in mice. In Os-mice treated with OVA-DT, levels of anti-OVA IgG2a in serum and the production of IFN-gamma by splenic lymphocytes were found to increase, but the production of IL-4 by these cells decreased. Re-direction of cytokine profiles from OVA-specific Th2 to OVA-specific Thl is suggested. These results indicate that OVA-DT can protect Os-mice from ASAS due to OVA challenge, because it inactivates OVA-specific IgE-expressing cells, including mast cells and B cells.
Anaphylaxis/prevention | control*
;
Animal
;
B-Lymphocytes/immunology
;
Female
;
Histamine Release/drug effects
;
IgE/metabolism
;
Interferon Type II/biosynthesis
;
Interleukin-4/biosynthesis
;
Lymphocyte Transformation/drug effects
;
Mast Cells/metabolism
;
Mice
;
Mice, Inbred BALB C
;
Ovalbumin/immunology*
;
Recombinant Fusion Proteins/therapeutic use*
5.Delayed allograft rejection by the suppression of class II transactivator.
Tae Woon KIM ; Young Mi CHOI ; Jae Nam SEO ; Ju Hyun KIM ; Young Ho SUH ; Doo Hyun CHUNG ; Kyeong Cheon JUNG ; Kwon Ik OH
Experimental & Molecular Medicine 2006;38(3):210-216
We examined the effect of class II transactivator (CIITA) down-modulation on allograft rejection. To inhibit the function of CIITA, we constructed a series of CIITA mutants and found one exhibiting the dominant-negative effect on the regulation of major histocompatibility complex (MHC) class II expression. To test whether the CIITA dominant-negative mutant reduces immunogenecity, CIITA-transfected melanoma cells were injected into allogeneic host and assessed for immune evading activity against host immune cells. We demonstrated that the CIITA dominant-negative mutant allowed tumor nodules to develop earlier in the lung than control by this tumor challenge study. Furthermore, skin grafts deficient for CIITA also survived longer than wild-type in allogeneic hosts. Both the tumor challenge and skin graft studies suggest the inhibition of CIITA molecules in donor tissue would be beneficial to the control of allo-response.
Transplantation, Homologous
;
Transfection
;
Trans-Activators/genetics/*immunology/metabolism
;
Trans-Activation (Genetics)/genetics/immunology
;
Skin Transplantation
;
Nuclear Proteins/genetics/*immunology/metabolism
;
Mutation
;
Mice, Transgenic
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Mice, Inbred BALB C
;
Mice
;
Melanoma, Experimental/genetics/immunology/pathology
;
Male
;
Interferon Type II/pharmacology
;
Humans
;
Histocompatibility Antigens Class II/genetics/*immunology/metabolism
;
Graft Survival/genetics/immunology
;
Graft Rejection/genetics/*immunology
;
Genes, MHC Class II/genetics/immunology
;
Flow Cytometry
;
DNA, Complementary/genetics
;
Cell Proliferation/drug effects
;
Cell Line, Tumor
;
Animals
6.Receptor activator of NF-kappaB ligand enhances the activity of macrophages as antigen presenting cells.
Hyewon PARK ; Ok Jin PARK ; Jieun SHIN ; Youngnim CHOI
Experimental & Molecular Medicine 2005;37(6):524-532
Receptor activator of NFkappaB ligand (RANKL) is known as a key regulator of osteoclastogenesis. However, the fact that fibroblasts and periodontal ligament cells express RANKL in response to bacterial substances, suggests that RANKL may have evolved as a part of the immunity to infection. As RANKL increases the survival and activity of dendritic cells, it may have similar effects on macrophages. To address this issue, we studied the effect of RANKL on various functions of macrophages using mouse bone marrow derived macrophages. RANKL enhanced the survival of macrophages and up-regulated the expression of CD86. RANKL-treated macrophages showed increased allogeneic T cell activation and phagocytic activity compared to control cells. In addition, RANKL increased the expression of TNFalpha, MCP-1, and IL-6 but not of IL-10, IL-12, IFN-gamma, and iNOS. Collectively, RANKL augmented the activity of macrophages especially as antigen presenting cells, suggesting its new role in immune regulation.
Animals
;
Antigen-Presenting Cells/cytology/*drug effects/immunology/*metabolism
;
Antigens, CD86/metabolism
;
Carrier Proteins/*pharmacology
;
Cell Death/drug effects
;
Cell Survival/drug effects
;
Cells, Cultured
;
Cytokines/metabolism
;
Flow Cytometry
;
Histocompatibility Antigens Class II/metabolism
;
Inflammation Mediators
;
Interferon Type II/pharmacology
;
Lipopolysaccharides/pharmacology
;
Macrophages/cytology/*drug effects/immunology/*metabolism
;
Membrane Glycoproteins/*pharmacology
;
Mice
;
Mice, Inbred C57BL
;
Mice, Inbred ICR
;
Nitric Oxide Synthase Type II/metabolism
;
Phagocytosis/drug effects
;
Research Support, Non-U.S. Gov't
;
T-Lymphocytes/immunology/metabolism
;
Up-Regulation/drug effects/genetics
7.The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264.7 macrophages.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Ya-Nan ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(5):355-360
A novel Pleurotus nebrodensis polysaccharide (PN-S) was purified and characterized, and its immune-stimulating activity was evaluated in RAW264.7 macrophages. PN-S induced the proliferation of RAW264.7 cells in a dose-dependent manner, as determined by the MTT assay. After exposure to PN-S, the phagocytosis of the macrophages was significantly improved, with remarkable changes in morphology being observed. Flow cytometric analysis demonstrated that PN-S promoted RAW264.7 cells to progress through S and G2/M phases. PN-S treatment enhanced the productions of interleukin-6 (IL-6), nitric oxide (NO), interferon gamma (INF-γ), and tumor necrosis factor-α (TNF-α) in the macrophages, with up-regulation of mRNA expressions of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), interferon gamma(INF-γ) and tumor necrosis factor-α (TNF-α) being observed in a dose-dependent manner, as measured by qRT-PCR. In conclusion, these results suggest that the purified PN-S can improve immunity by activating macrophages.
Animals
;
Cell Cycle
;
immunology
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Fungal Polysaccharides
;
pharmacology
;
Immunity
;
drug effects
;
Interferon-gamma
;
biosynthesis
;
metabolism
;
Interleukin-6
;
biosynthesis
;
metabolism
;
Macrophages
;
immunology
;
metabolism
;
Mice
;
Nitric Oxide
;
biosynthesis
;
Nitric Oxide Synthase Type II
;
metabolism
;
Pleurotus
;
RNA, Messenger
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tumor Necrosis Factor-alpha
;
biosynthesis
;
metabolism
;
Up-Regulation
8.In vivo ligation of glucocorticoid-induced TNF receptor enhances the T-cell immunity to herpes simplex virus type 1.
Soojin LA ; Eunhwa KIM ; Byungsuk KWON
Experimental & Molecular Medicine 2005;37(3):193-198
GITR (glucocorticoid-induced TNF receptor) is a recently identified member of the TNF receptor superfamily. The receptor is preferentially expressed on CD4+CD25+ regulatory T cells and GITR signals break the suppressive activity of the subset. In this study, we wanted to reveal the in vivo function of GITR in herpes simplex virus type 1 (HSV-1) infection. A single injection of anti-GITR mAb (DTA-1) immediately after viral infection significantly increased the number of CD4+ and CD8+ T cells expressing CD25, an activation surface marker, and secreting IFN-gamma. We confirmed these in vivo observations by showing ex vivo that re-stimulation of CD4+ or CD8+ T cells with a CD4+ or CD8+ T-cell-specific HSV-1 peptide, respectively, induced a significant elevation in cell proliferation and in IFN-gamma secretion. Our results indicate that GITR signals play a critical role in the T-cell immunity to HSV-1.
Animals
;
Antibodies, Monoclonal/pharmacology
;
CD4-Positive T-Lymphocytes/immunology
;
CD8-Positive T-Lymphocytes/immunology
;
Cell Proliferation
;
Female
;
Glucocorticoids/*pharmacology
;
Herpes Simplex/*immunology
;
Herpesvirus 1, Human/pathogenicity
;
*Immunity, Cellular
;
Interferon Type II/secretion
;
*Lymphocyte Activation
;
Mice
;
Mice, Inbred BALB C
;
Peptide Fragments/metabolism
;
Receptors, Interleukin-2/metabolism
;
Receptors, Nerve Growth Factor/genetics/immunology/*metabolism
;
Receptors, Tumor Necrosis Factor/genetics/immunology/*metabolism
;
Research Support, Non-U.S. Gov't
;
T-Lymphocytes/*immunology/metabolism/virology
9.Murine Model of Buckwheat Allergy by Intragastric Sensitization with Fresh Buckwheat Flour Extract.
Soo Young LEE ; Sejo OH ; Kisun LEE ; Young Ju JANG ; Myung Hyun SOHN ; Kyoung En LEE ; Kyu Earn KIM
Journal of Korean Medical Science 2005;20(4):566-572
Food allergies affect about 4% of the Korean population, and buckwheat allergy is one of the most severe food allergies in Korea. The purpose of the present study was to develop a murine model of IgE-mediated buckwheat hypersensitivity induced by intragastric sensitization. Young female C3H/HeJ mice were sensitized and challenged intragastricly with fresh buckwheat flour (1, 5, 25 mg/dose of proteins) mixed in cholera toxin, followed by intragastric challenge. Anaphylactic reactions, antigen-specific antibodies, splenocytes proliferation assays and cytokine productions were evaluated. Oral buckwheat challenges of sensitized mice provoked anaphylactic reactions such as severe scratch, perioral/periorbital swellings, or decreased activity. Reactions were associated with elevated levels of buckwheatspecific IgE antibodies. Splenocytes from buckwheat allergic mice exhibited significantly greater proliferative responses to buckwheat than non-allergic mice. Buckwheat-stimulated IL-4, IL-5, and INF-gamma productions were associated with elevated levels of buckwheat-specific IgE in sensitized mice. In this model, 1 mg and 5 mg dose of sensitization produced almost the same degree of Th2-directed immune response, however, a 25 mg dose showed blunted antibody responses. In conclusion, we developed IgE-mediated buckwheat allergy by intragastric sensitization and challenge, and this model could provide a good tool for future studies.
Anaphylaxis/blood/immunology
;
Animals
;
Cell Proliferation/drug effects
;
Comparative Study
;
Disease Models, Animal
;
Dose-Response Relationship, Drug
;
Enzyme-Linked Immunosorbent Assay
;
Fagopyrum/*immunology
;
Female
;
*Flour
;
Food Hypersensitivity/blood/*immunology
;
Immunoglobulin E/blood/immunology
;
Immunoglobulin G/blood/immunology
;
Interferon Type II/biosynthesis
;
Interleukin-4/biosynthesis
;
Interleukin-5/biosynthesis
;
Mice
;
Mice, Inbred C3H
;
Plant Extracts/administration & dosage/immunology
;
Research Support, Non-U.S. Gov't
;
Spleen/cytology/drug effects/metabolism
;
Stomach/drug effects/*immunology
;
T-Lymphocytes/cytology/drug effects/metabolism
;
Time Factors
10.Human beta-defensin 2 is induced by interleukin-1b in the cornealepithelial cells.
Jun Seop SHIN ; Chan Wha KIM ; Young Sam KWON ; Jae Chan KIM
Experimental & Molecular Medicine 2004;36(3):204-210
Mammalian epithelia produce the various antimicrobial peptides against the bacterial or viral infection, thereby acting as the active immune modulators in the innate immunity. In this study, we examined the effects of the various proinflammatory cytokines or LPS on cell viability and antimicrobial beta-defensin gene expressions in human corneal epithelial cells. Results showed that the cytokines or LPS did not exert severe cytotoxic effects on the cells, and that beta-defensin 1 was constitutively expressed, while beta-defensin 2 was specifically induced by IL-1beta, supporting the idea that these cytokines or LPS involve the defense mechanism in the cornea. Furthermore, the reporter and gel shift assay to define the induction mechanism of beta-defensin 2 by IL-1beta demonstrated that the most proximal NF-kB site on the promoter region of beta-defensin 2 was not critical for the process. Data obtained from the normal or patients with the varying ocular diseases showed that our in vitro results were relevant in the clinical settings. Our results clearly demonstrated that beta-defensin 1 and 2 are important antimicrobial peptides in the corneal tissues, and that the mechanistic induction process of beta-defensin 2 by IL-1beta is not solely dependent on proximal NF-kB site activation, thus suggesting that the long distal portion of the promoter is needed for the full responsiveness toward IL-1beta.
Binding, Competitive
;
Cell Survival
;
Cells, Cultured
;
Corneal Diseases/metabolism
;
Electrophoretic Mobility Shift Assay
;
Epithelium, Corneal/drug effects/*immunology/metabolism
;
Gene Expression
;
Humans
;
Interferon Type II/metabolism/pharmacology
;
Interleukin-1/*pharmacology
;
Lipopolysaccharides/metabolism/pharmacology
;
NF-kappa B/metabolism
;
Promoter Regions (Genetics)/drug effects/genetics
;
Research Support, Non-U.S. Gov't
;
Tumor Necrosis Factor-alpha/metabolism/pharmacology
;
beta-Defensins/*biosynthesis/genetics/metabolism