1.Effects of combined therapy with thalidomide and glucantime on leishmaniasis induced by Leishmania major in BALB/c mice.
Ghassem SOLGI ; Amina KARIMINIA ; Khossro ABDI ; Majid DARABI ; Behnaz GHAREGHOZLOO
The Korean Journal of Parasitology 2006;44(1):55-61
For treating Leishmania major infection in BALB/c mice, we used thalidomide in conjunction with glucantime. Groups of mice were challenged with 5 x 10(3) metacyclic promastigotes of L. major subcutaneously. A week after the challenge, drug treatment was started and continued for 12 days. Thalidomide was orally administrated 30 mg/kg/day and glucantime was administrated intraperitoneally (200 mg/kg/day). It was shown that the combined therapy is more effective than single therapies with each one of the drugs since the foot pad swelling in the group of mice received thalidomide and glucantime was significantly decreased (0.9 +/- 0.2 mm) compared to mice treated with either glucantime, thalidomide, or carrier alone (1.2 +/- 0.25, 1.4 +/- 0.3, and 1.7 +/- 0.27 mm, respectively). Cytokine study showed that the effect of thalidomide was not dependent on IL-12; however, it up-regulated IFN-gamma and down-regulated IL-10 production. Conclusively, thalidomide seems promising as a conjunctive therapy with antimony in murine model of visceral leishmaniasis.
Time Factors
;
Thalidomide/pharmacology/*therapeutic use
;
Organometallic Compounds/pharmacology/*therapeutic use
;
Mice, Inbred BALB C
;
Mice
;
Meglumine/pharmacology/*therapeutic use
;
Leishmaniasis, Visceral/*drug therapy/immunology
;
Leishmania major/*drug effects
;
Interleukin-12/analysis/biosynthesis
;
Interleukin-10/analysis/biosynthesis
;
Interferon Type II/analysis/biosynthesis/drug effects
;
Immunosuppressive Agents/pharmacology/*therapeutic use
;
Female
;
Drug Therapy, Combination
;
Disease Progression
;
Disease Models, Animal
;
Cells, Cultured
;
Antiprotozoal Agents/pharmacology/*therapeutic use
;
Animals
2.Soluble factor from tumor cells induces heme oxygenase-1 by a nitric oxide-independent mechanism in murine peritoneal macrophages.
Sang Wook KIM ; Hyun Mee OH ; Beom Su KIM ; Hun Taeg CHUNG ; Weon Cheol HAN ; Eun Cheol KIM ; Tae Hyeon KIM ; Geom Seog SEO ; June Hyung LYOU ; Yong Ho NAH ; Jae Chang JUNG ; Suck Chei CHOI ; Chang Duk JUN
Experimental & Molecular Medicine 2003;35(1):53-59
Tumor target-derived soluble secretary factor has been known to influence macrophage activation to induce nitric oxide (NO) production. Since heme oxigenase-1 (HO-1) is induced by a variety of conditions associated with oxidative stress, we questioned whether soluble factor from tumor cells induces HO-1 through NO-dependent mechanism in macrophages. We designated this factor as a tumor-derived macrophage-activating factor (TMAF), because of its ability to activate macrophages to induce iNOS. Although TMAF alone showed modest activity, TMAF in combination with IFN-gamma significantly induced iNOS expression and NO synthesis. Simultaneously, TMAF induced HO-1 and this induction was slightly augmented by IFN-gamma. Surprisingly, however, induction of HO-1 by TMAF was not inhibited by the treatment with the highly selective iNOS inhibitor, 1400 W, indicating that TMAF induces the HO-1 enzyme by a NO-independent mechanism. While rIFN-gamma alone induced iNOS, it had no effect on HO-1 induction by itself. Collectively, the current study reveals that soluble factor from tumor target cells induces HO-1 enzyme in macrophages. However, overall biological significance of this phenomenon remains to be determined.
Animals
;
Antineoplastic Agents/pharmacology
;
Bladder Neoplasms/metabolism/pathology
;
Cell Line
;
Drug Interactions
;
Gene Expression Regulation, Enzymologic/drug effects
;
Heme Oxygenase (Decyclizing)/analysis/*genetics
;
Human
;
Interferon Type II/pharmacology
;
Macrophage Activation/drug effects
;
Macrophages, Peritoneal/*metabolism
;
Mice
;
Mice, Inbred C57BL
;
Nitric Oxide/biosynthesis/*metabolism
;
Nitric-Oxide Synthase/genetics/metabolism
;
Nitrites/analysis
;
Tumor Cells, Cultured