1.Genetic characteristic analysis of slight-to-moderate sensorineural hearing loss in children.
Rui ZHOU ; Jing GUAN ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):18-22
Objective:b>To analyze genetic factors and phenotype characteristics in pediatric population with slight-to-moderate sensorineural hearing loss. Methods:b>Children with slight-to-moderate sensorineural hearing loss of and their parents, enrolled from the Chinese Deafness Genome Project, were studied. Hearing levels were assessed using pure tone audiometry, behavioral audiometry, auditory steady state response(ASSR), auditory brainstem response(ABR) thresholds, and deformed partial otoacoustic emission(DPOAE). Classification of hearing loss is according to the 2022 American College of Medical Genetics and Genomics(ACMG) Clinical Practice Guidelines for Hearing Loss. Whole exome sequencing(WES) and deafness gene Panel testing were performed on peripheral venous blood from probands and validations were performed on their parents by Sanger sequencing. Results:b>All 134 patients had childhood onset, exhibiting bilateral symmetrical slight-to-moderate sensorineural hearing loss, as indicated by audiological examinations. Of the 134 patients, 29(21.6%) had a family history of hearing loss, and the rest were sporadic patients. Genetic causative genes were identified in 66(49.3%) patients. A total of 11 causative genes were detected, of which GJB2 was causative in 34 cases(51.5%), STRC in 10 cases(15.1%), MPZL2 gene in six cases(9.1%), and USH2A in five cases(7.6%).The most common gene detected in slight-to-moderate hearing loss was GJB2, with c. 109G>A homozygous mutation found in 16 cases(47.1%) and c. 109G>A compound heterozygous mutation in 9 cases(26.5%). Conclusion:b>This study provides a crucial genetic theory reference for early screening and detection of mild to moderate hearing loss in children, highlighting the predominance of recessive inheritance and the significance of gene like GJB2, STRC, MPZL2, USH2A.
Humans
;
Child
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Hearing Loss, Sensorineural/diagnosis*
;
Mutation
;
Usher Syndromes
;
Hearing Loss, Bilateral
;
Audiometry, Pure-Tone
;
Intercellular Signaling Peptides and Proteins
3.Effects of VX765 on osteoarthritis and chondrocyte inflammation in rats.
Wanran HUANG ; Junxue TU ; Aiqing QIAO ; Chujun HE
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):74-81
OBJECTIVE:
To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats.
METHODS:
Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 μmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor β 1 (TGF-β 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ.
RESULTS:
The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 μmol/L ( P<0.05), so 4 μmol/L and 8 μmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-β 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 μmol/L and 8 μmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression.
CONCLUSION
VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.
Rats
;
Animals
;
Chondrocytes/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
;
Collagen Type II/metabolism*
;
Interleukin-6
;
Lipopolysaccharides/pharmacology*
;
NF-E2-Related Factor 2/pharmacology*
;
Inflammation/drug therapy*
;
Osteoarthritis/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Dipeptides
;
para-Aminobenzoates
4.Impact of lithocholic acid on the osteogenic and adipogenic differentiation balance of bone marrow mesenchymal stem cells.
Cui WANG ; Jiao LI ; Lingyun LU ; Lu LIU ; Xijie YU
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):82-90
OBJECTIVE:
To Investigate the effects of lithocholic acid (LCA) on the balance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).
METHODS:
Twelve 10-week-old SPF C57BL/6J female mice were randomly divided into an experimental group (undergoing bilateral ovariectomy) and a control group (only removing the same volume of adipose tissue around the ovaries), with 6 mice in each group. The body mass was measured every week after operation. After 4 weeks post-surgery, the weight of mouse uterus was measured, femur specimens of the mice were taken for micro-CT scanning and three-dimensional reconstruction to analyze changes in bone mass. Tibia specimens were taken for HE staining to calculate the number and area of bone marrow adipocytes in the marrow cavity area. ELISA was used to detect the expression of bone turnover markers in the serum. Liver samples were subjected to real-time fluorescence quantitative PCR (RT-qPCR) to detect the expression of key genes related to bile acid metabolism, including cyp7a1, cyp7b1, cyp8b1, and cyp27a1. BMSCs were isolated by centrifugation from 2 C57BL/6J female mice (10-week-old). The third-generation cells were exposed to 0, 1, 10, and 100 μmol/L LCA, following which cell viability was evaluated using the cell counting kit 8 assay. Subsequently, alkaline phosphatase (ALP) staining and oil red O staining were conducted after 7 days of osteogenic and adipogenic induction. RT-qPCR was employed to analyze the expressions of osteogenic-related genes, namely ALP, Runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), as well as adipogenic-related genes including Adiponectin (Adipoq), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ (PPARγ).
RESULTS:
Compared with the control group, the body mass of the mice in the experimental group increased, the uterus atrophied, the bone mass decreased, the bone marrow fat expanded, and the bone metabolism showed a high bone turnover state. RT-qPCR showed that the expressions of cyp7a1, cyp8b1, and cyp27a1, which were related to the key enzymes of bile acid metabolism in the liver, decreased significantly ( P<0.05), while the expression of cyp7b1 had no significant difference ( P>0.05). Intervention with LCA at concentrations of 1, 10, and 100 μmol/L did not demonstrate any apparent toxic effects on BMSCs. Furthermore, LCA inhibited the expressions of osteogenic-related genes (ALP, Runx2, and OCN) in a dose-dependent manner, resulting in a reduction in ALP staining positive area. Concurrently, LCA promoted the expressions of adipogenic-related genes (Adipoq, FABP4, and PPARγ), and an increase in oil red O staining positive area.
CONCLUSION
After menopause, the metabolism of bile acids is altered, and secondary bile acid LCA interferes with the balance of osteogenic and adipogenic differentiation of BMSCs, thereby affecting bone remodelling.
Female
;
Mice
;
Animals
;
Core Binding Factor Alpha 1 Subunit/pharmacology*
;
PPAR gamma/metabolism*
;
Steroid 12-alpha-Hydroxylase/metabolism*
;
Mice, Inbred C57BL
;
Cell Differentiation
;
Osteogenesis
;
Mesenchymal Stem Cells
;
Bile Acids and Salts/pharmacology*
;
Bone Marrow Cells
;
Cells, Cultured
;
Azo Compounds
5.The number of FOXP3+regulatory T cells (Tregs) decreased and transformed into RORγt+FOXP3+Tregs in lung tissues of mice with bronchopulmonary dysplasia.
Langyue HE ; Hongyan LU ; Ying ZHU ; Jianfeng JIANG ; Huimin JU ; Yu QIAO ; Shanjie WEI
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):7-12
Objective To explore the phenotypic conversion of regulatory T cells (Tregs) in the lungs of mice with bronchopulmonary dysplasia (BPD)-affected mice. Methods A total of 20 newborn C57BL/6 mice were divided into air group and hyperoxia group, with 10 mice in each group. The BPD model was established by exposing the newborn mice to hyperoxia. Lung tissues from five mice in each group were collected on postnatal days 7 and 14, respectively. Histopathological changes of the lung tissues was detected by HE staining. The expression level of surfactant protein C (SP-C) in the lung tissues was examined by Western blot analysis. Flow cytometry was performed to assess the proportion of FOXP3+ Tregs and RORγt+FOXP3+ Tregs in CD4+ lymphocytes. The concentrations of interleukin-17A (IL-17A) and IL-6 in lung homogenate were measured by using ELISA. Spearman correlation analysis was used to analyze the correlation between FOXP3+Treg and the expression of SP-C and the correlation between RORγt+FOXP3+ Tregs and the content of IL-17A and IL-6. Results The hyperoxia group exhibited significantly decreased levels of SP-C and radical alveolar counts in comparison to the control group. The proportion of FOXP3+Tregs was reduced and that of RORγt+FOXP3+Tregs was increased. IL-17A and IL-6 concentrations were significantly increased. SP-C was positively correlated with the expression level of RORγt+FOXP3+ Tregs. RORγt+FOXP3+ Tregs and IL-17A and IL-6 concentrations were also positively correlated. Conclusion The number of FOXP3+ Tregs in lung tissue of BPD mice is decreased and converted to RORγt+ FOXP3+ Tregs, which may be involved in hyperoxy-induced lung injury.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Bronchopulmonary Dysplasia
;
T-Lymphocytes, Regulatory
;
Interleukin-17
;
Nuclear Receptor Subfamily 1, Group F, Member 3
;
Hyperoxia
;
Interleukin-6
;
Forkhead Transcription Factors
;
Lung
6.IL-6 enhances the phagocytic function of mouse alveolar macrophages by activating the JAK2/STAT3 signaling pathway.
Mengqing HUA ; Peiyu GAO ; Fang FANG ; Haoyu SU ; Chuanwang SONG
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):13-18
Objective To investigate the effect of interleukin-6 (IL-6) on the phagocytosis of MH-S alveolar macrophages and its related mechanisms. Methods A mouse acute lung injury (ALI) model was constructed by instilling lipopolysaccharide (LPS) into the airway. ELISA was used to detect the content of IL-6 in bronchoalveolar lavage fluid (BALF). In vitro cultured MH-S cells, in the presence or absence of signal transducer and activator 3 of transcription(STAT3) inhibitor Stattic (5 μmol/L), IL-6 (10 ng/mL~500 ng/mL) was added to stimulate for 6 hours, and then incubated with fluorescent microspheres for 2 hours. The phagocytosis of MH-S cells was detected by flow cytometry. Western blot analysis was used to detect the expression levels of phosphorylated Janus kinase 2 (p-JAK2), phosphorylated STAT3 (p-STAT3), actin-related protein 2 (Arp2) and filamentous actin (F-actin). Results The content of IL-6 in BALF was significantly increased after the mice were injected with LPS through the airway. With the increase of IL-6 stimulation concentration, the phagocytic function of MH-S cells was enhanced, and the expression levels of Arp2 and F-actin proteins in MH-S cells were increased. The expression levels of p-JAK2 and p-STAT3 proteins increased in MH-S cells stimulated with IL-6(100 ng/mL). After blocking STAT3 signaling, the effect of IL-6 in promoting phagocytosis of MH-S cells disappeared completely, and the increased expression of Arp2 and F-actin proteins in MH-S cells induced by IL-6 was also inhibited. Conclusion IL-6 promotes the expression of Arp2 and F-actin proteins by activating the JAK2/STAT3 signaling pathway, thereby enhancing the phagocytic function of MH-S cells.
Animals
;
Mice
;
Actins
;
Disease Models, Animal
;
Interleukin-6
;
Janus Kinase 2
;
Lipopolysaccharides
;
Macrophages, Alveolar
;
Signal Transduction
7.MOR106 alleviates inflammation in mice with atopic dermatitis by blocking the JAK2/STAT3 signaling pathway and inhibiting IL-17C-mediated Tfh cell differentiation.
Limin TIAN ; Xiaohui HUYAN ; Sen YANG ; Mengjie WANG ; Yuenan YANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):26-32
Objective To explore the significance of interleukin-17C(IL-17C)-mediated follicular helper T cell (Tfh) differentiation in atopic dermatitis (AD) model. Methods BALB/c mice were divided into control group, AD model group, low-dose MOR106 (anti-IL-17C huIgG1)(MDR106-L)treatment group and high-dose MOR106 (MOR106-H) treatment group, 8 mice in each group. Except for the control group, all the other groups were treated with 2, 4- dinitrochlorobenzene (DNCB) to establish AD models. The low-dose and high-dose MOR106 groups were treated with 5 mg/kg or 10 mg/kg MOR106 respectively. The differentiation of Tfh cell subsets in peripheral blood of mice was analyzed by flow cytometry, and the expression of Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3) signal pathway protein in skin tissue was detected by Western blot analysis. Results Compared with the control group, the dermatitis severity score, mass difference between two ears, spleen mass and spleen index of DNCB group increased significantly, while those of MOR106-L group and MOR106-H group decreased significantly. Compared with the control group, the Tfh subgroup of AD mice showed deregulated differentiation, resulting in a significant increase in the percentage of CD4+CXCR5+IFN-γ+Tfh1 cells, CD4+CXCR5+IL-17A+Tfh17 and CD4+CXCR5+IL-21+Tfh21 cells, and a significant decrease in the percentage of CD4+CXCR5+IL-10+Tfh10 cells and CD4+CXCR5+FOXP3+Tfr cells in peripheral blood. The protein levels of phosphorylated JAK2(p-JAK2) and p-STAT3 were significantly increased. MOR106 effectively reversed these changes of Tfh1, Tfh10, Tfh17, Tfh21 and Tfr cells in peripheral blood of AD mice. Compared with AD group, the levels of p-JAK2 and p-STAT3 protein in low-dose and high-dose MOR106 treatment groups decreased significantly. Conclusion MOR106 can reduce the inflammatory response of AD mice by blocking JAK2/STAT3 signaling pathway and inhibiting the differentiation of Tfh cells mediated by IL-17C.
Animals
;
Mice
;
Dermatitis, Atopic/drug therapy*
;
Interleukin-17
;
T Follicular Helper Cells
;
Janus Kinase 2
;
Dinitrochlorobenzene
;
Inflammation
;
Cell Differentiation
;
Signal Transduction
8.miR-185-5p alleviates the inflammatory response of acute gouty arthritis by inhibiting of IL-1β.
Nan HOU ; Xianghui MA ; Wei ZHOU ; Min YUAN ; Liming XU ; Huanxia SUN ; Yifan LIU ; Lining LIU ; Yanjun SHI ; Chunxian LI ; Yanfa FU
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):51-57
Objective To investigate the relationship between interleukin-1β (IL-1β) and miR-185-5p in the process of joint injury in acute gouty arthritis (AGA). Methods The serum miR-185-5p levels of 89 AGA patients and 91 healthy volunteers were detected by real-time quantitative PCR. The correlation between miR-185-5p expression level and VAS score or IL-1β expression level was evaluated by Pearson correlation coefficient method. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of miR-185-5p in AGA. THP-1 cells were induced by sodium urate (MSU) to construct an in vitro acute gouty inflammatory cell model. After the expression level of miR-185-5p in THP-1 cells was upregulated or downregulated by transfection of miR-185-5p mimics or inhibitors in vitro, inflammatory cytokines of THP-1 cells, such as IL-1β, IL-8 and tumor necrosis factor α (TNF-α), were detected by ELISA. The luciferase reporter gene assay was used to determine the interaction between miR-185-5p and the 3'-UTR of IL-1β. Results Compared with the healthy control group, the expression level of serum miR-185-5p in AGA patients was significantly reduced. The level of serum miR-185-5p was negatively correlated with VAS score and IL-1β expression level. The area under the curve (AUC) was 0.905, the sensitivity was 80.17% and the specificity was 83.52%. Down-regulation of miR-185-5p significantly promoted the expression of IL-1β, IL-8 and tumor necrosis factor (TNF-α), while overexpression of miR-185-5p showed the opposite results. Luciferase reporter gene assay showed that IL-1β was the target gene of miR-185-5p, and miR-185-5p negatively regulated the expression of IL-1β. Conclusion miR-185-5p alleviates the inflammatory response in AGA by inhibiting IL-1β.
Humans
;
3' Untranslated Regions
;
Arthritis, Gouty/genetics*
;
Interleukin-1beta/genetics*
;
Interleukin-8
;
Luciferases
;
MicroRNAs/genetics*
;
Tumor Necrosis Factor-alpha
9.Sema3A secreted by sensory nerve induces bone formation under mechanical loads.
Hongxiang MEI ; Zhengzheng LI ; Qinyi LV ; Xingjian LI ; Yumeng WU ; Qingchen FENG ; Zhishen JIANG ; Yimei ZHOU ; Yule ZHENG ; Ziqi GAO ; Jiawei ZHOU ; Chen JIANG ; Shishu HUANG ; Juan LI
International Journal of Oral Science 2024;16(1):5-5
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
Humans
;
Bone Remodeling
;
Cell Differentiation
;
Osteogenesis
;
Semaphorin-3A/pharmacology*
;
Trigeminal Ganglion/metabolism*
10.Dermatophagoides farinae induces conjunctival epithelial cell damage to promote neutrophil migration and neutrophil extracellular traps formation.
Meili WU ; Ru YAN ; Wenjun ZHAO
Chinese Journal of Schistosomiasis Control 2023;35(3):271-278
OBJECTIVE:
To investigate the mechanisms underlying allergic conjunctivitis caused by conjunctival epithelial cell damage, neutrophil migration and neutrophil extracellular traps (NETs) formation induced by crude extracts of Dermatophagoides farinae mite (CDM).
METHODS:
Human conjunctival epithelial cells were stimulated with 500, 1 000, 2 000, 4 000 ng/mL, and the expression levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and IL-8 were detected using quantitative real-time PCR (qPCR) assay and enzyme-linked immunosorbent assay (ELISA). The culture supernatant of human conjunctival epithelial cells was collected and co-cultured with neutrophils. Neutrophil migration was measured using Transwell migration assay, and the expression of NETs markers myeloperoxidase (MPO) and citrullinated histone H3 (CitH3) was quantified using immunofluorescence staining. Neutrophils were stimulated with phorbol 12-myristate 13-acetate (PMA), and then NETs were collected for treatment of human conjunctival epithelial cells. Cell apoptosis was detected using flow cytometry, and the levels of IL-6, TNF-α, IFN-γ and IL-8 were measured in the cell culture supernatant using ELISA.
RESULTS:
Treatment with CDM at concentrations of 2 000 ng/mL and 4 000 ng/mL up-regulated IL-6, TNF-α, IFN-γ and IL-8 expression in human conjunctival epithelial cells. Following treatment with CDM at concentrations of 2 000 ng/mL and 4 000 ng/mL, the culture supernatant of human conjunctival epithelial cells promoted neutrophil migration and induced increases in the staining intensity of MPO and CitH3. In addition, increased NETs triggered the apoptosis of human conjunctival epithelial cells and IL-6, TNF-α, IFN-γ and IL-8 secretion in the culture supernatant of human conjunctival epithelial cells.
CONCLUSIONS
CDM induces human conjunctival epithelial cell damages, thereby promoting neutrophil migration and NETs formation, while the release of NETs further aggravates human conjunctival epithelial cell damages.
Animals
;
Humans
;
Extracellular Traps
;
Neutrophils
;
Interleukin-8/metabolism*
;
Dermatophagoides farinae
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Epithelial Cells
;
Interferon-gamma/metabolism*
;
Tetradecanoylphorbol Acetate/pharmacology*

Result Analysis
Print
Save
E-mail