1.Vasoactive polypeptides and cardiovascular endocrine diseases.
Acta Academiae Medicinae Sinicae 2005;27(4):443-445
Cardiovascular bioactive peptides constitute life activity of human beings. They play important roles in regulating the development of cardiovascular system, and controlling disease progression. Recently, interests have arised on the adjusting effects of cardiovascular bioactive peptides on endocrine metabolism, its changes during disease course, influence on disease pathogenesis, as well as its effects on the diagnosis, treatment, and early interventions. New advances have been increasingly achieved in basic and clinical researches. It has become one of the most active areas in life sciences.
Cardiovascular Diseases
;
physiopathology
;
Endocrine System Diseases
;
physiopathology
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
physiology
;
Peptide Hormones
;
physiology
3.Slit/Robo pathway participates in luteal cells apoptosis.
Xue-Jing ZHANG ; Mei-Yan MI ; Wei-Li HAO ; Bu-Lang GAO
Acta Physiologica Sinica 2019;71(2):287-293
This study was aimed to examine the expression and function of Slit/Robo family members in mouse ovary. Real-time PCR was used to assess the mRNA expression levels of Slit/Robo family members, and immunohistochemistry was used to examine the location of Slit2 and Robo1 in the ovary. The mRNA and protein expression levels of Slit2 and Robo1 in early-, middle- and late-phase corpus luteum (CL) were examined by real-time PCR and immunohistochemistry, respectively. Blocking agent ROBO1/Fc chimera was used in the luteal cells in vitro to examine the function of Slit/Robo signaling pathway in mouse CL. The results showed that, among the Slit/Robo family members, the expression levels of ligand Slit2 and receptor Robo1 were the highest in mouse ovarian tissue. Moreover, both of them were specifically expressed in mouse luteal cells. Compared with proestrus ovaries, the expression levels of Slit2 and Robo1 mRNA in the ovaries during diestrus were significantly up-regulated (P < 0.01, P < 0.001). The mRNA expression levels of Slit2 and Robo1 in late-phase CL were significantly increased when compared with pregnant CL. Furthermore, blocking Slit/Robo signaling pathway with ROBO1/Fc chimera in the luteal cells in vitro significantly decreased the apoptotic rate of late luteal cells. These results suggest that Slit/Robo family members are mainly expressed in the late-phase CL of ovary and participate in luteal cells apoptosis.
Animals
;
Apoptosis
;
Female
;
Intercellular Signaling Peptides and Proteins
;
physiology
;
Luteal Cells
;
cytology
;
Mice
;
Nerve Tissue Proteins
;
physiology
;
Pregnancy
;
Receptors, Immunologic
;
physiology
4.Research progress of the regulation of orphan nuclear receptors on chronic liver diseases.
Zhi-Hui YANG ; Jia-Hui WANG ; Lei WANG ; Xue-Lin DUAN ; Hong-Hong WANG ; Yue PENG ; Tie-Jian ZHAO ; Yang ZHENG
Acta Physiologica Sinica 2023;75(4):555-568
The development of chronic liver disease can be promoted by excessive fat accumulation, dysbiosis, viral infections and persistent inflammatory responses, which can lead to liver inflammation, fibrosis and carcinogenesis. An in-depth understanding of the etiology leading to chronic liver disease and the underlying mechanisms influencing its development can help identify potential therapeutic targets for targeted treatment. Orphan nuclear receptors (ONRs) are receptors that have no corresponding endogenous ligands to bind to them. The study of these ONRs and their biological properties has facilitated the development of synthetic ligands, which are important for investigating the effective targets for the treatment of a wide range of diseases. In recent years, it has been found that ONRs are essential for maintaining normal liver function and their dysfunction can affect a variety of liver diseases. ONRs can influence pathophysiological activities such as liver lipid metabolism, inflammatory response and cancer cell proliferation by regulating hormones/transcription factors and affecting the biological clock, oxidative stress, etc. This review focuses on the regulation of ONRs, mainly including retinoid related orphan nuclear receptors (RORs), pregnane X receptor (PXR), leukocyte cell derived chemotaxin 2 (LECT2), Nur77, and hepatocyte nuclear factor 4α (HNF4α), on the development of different types of chronic liver diseases in different ways, in order to provide useful references for the therapeutic strategies of chronic liver diseases based on the regulation of ONRs.
Humans
;
Orphan Nuclear Receptors/metabolism*
;
Receptors, Steroid/physiology*
;
Ligands
;
Liver
;
Liver Diseases
;
Intercellular Signaling Peptides and Proteins
5.Epidermal growth factor receptor and ligands in pancreatic beta-cell.
Lixia GUO ; Fei YIN ; Jianhui LIN
Journal of Biomedical Engineering 2011;28(1):203-207
Epidermal growth factor receptor (EGFR) cell signaling plays a central role in beta-cell mass/function regulation, and provides a new strategy for the treatment of diabetes, but its mechanisms of action remain poorly understood. In developmental biology, pancreatic islet development is impaired in lacking EGFR of mice. The attenuation of EGFR signaling in the islets leads to markedly reduced beta-cell proliferation. EGFR ligands BTC can increase proliferation and neogenesis. In this article EGFR and their ligands in the pancreas, EGFR cell signaling, and EGFR effects in pancreatic beta-cell mass/function regulation were reviewed.
Betacellulin
;
Humans
;
Insulin-Secreting Cells
;
metabolism
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Ligands
;
Receptor, Epidermal Growth Factor
;
metabolism
;
Signal Transduction
;
physiology
6.LEDGF/p75: a novel target for anti-HIV therapy and advances in the study of its related inhibitors.
Acta Pharmaceutica Sinica 2009;44(9):953-960
LEDGF/p75 is a newly found cell cofactor, which plays an essential role in the integration of HIV-1 cDNA into host chromosomes. LEDGF/p75 tethers HIV integrase to chromatin, protects it from degradation, and strongly influences the genome-wide pattern of HIV integration. Depleting the protein from cells or over-expressing the integrase-binding domain of LEDGF/p75 blocks viral replication. The essential role of LEDGF/p75 in HIV-1 replication makes it a new target for anti-HIV-1 drug development. This article reviews the function of LEDGF/p75, LEDGF/p75-integrase interaction and LEDGF/p75 inhibitors.
Anti-HIV Agents
;
chemistry
;
pharmacology
;
HIV Integrase
;
metabolism
;
HIV-1
;
drug effects
;
physiology
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Protein Binding
7.Salivary gland branching morphogenesis--recent progress and future opportunities.
Jeff Chi-feng HSU ; Kenneth M YAMADA
International Journal of Oral Science 2010;2(3):117-126
Salivary glands provide saliva to maintain oral health, and a loss of salivary gland function substantially decreases quality-of-life. Understanding the biological mechanisms that generate salivary glands during embryonic development may identify novel ways to regenerate function or design artificial salivary glands. This review article summarizes current research on the process of branching morphogenesis of salivary glands, which creates gland structure during development. We highlight exciting new advances and opportunities in studies of cell-cell interactions, mechanical forces, growth factors, and gene expression patterns to improve our understanding of this important process.
Animals
;
Cell Communication
;
physiology
;
Embryonic Development
;
physiology
;
Epithelium
;
embryology
;
Extracellular Matrix
;
physiology
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
physiology
;
Morphogenesis
;
physiology
;
Salivary Glands
;
embryology
8.The application of vascular endothelial growth factor in forensic science.
Mei LI ; Min LIU ; Xin WANG ; Zhi Gang LIAO
Journal of Forensic Medicine 2001;17(4):239-241
Vascular Endothelial Growth Factor (VEGF) is a potent angiogenic factor with a key role in several pathological processes, including wound repair as well as a effective vascular permeability factor. This article review the present study of VEGF in molecular biology, the connection with repair and expression regulation and so on.
Animals
;
Endothelial Growth Factors/physiology*
;
Forensic Medicine
;
Humans
;
Intercellular Signaling Peptides and Proteins/physiology*
;
Lymphokines/physiology*
;
Rats
;
Vascular Endothelial Growth Factor A
;
Vascular Endothelial Growth Factors
;
Wound Healing/physiology*
9.Expression of Pref-1 and Related Chemokines during theDevelopment of Rat Mesenteric Lymph Nodes.
Yan PENG ; Li Min JIA ; Bao Xin LI ; Li Ping XIE ; Zun Jiang XIE ; Jin Hua ZHENG
Biomedical and Environmental Sciences 2018;31(7):507-514
OBJECTIVEThe aim of this study was to investigate the ability of Pref-1+ adipocyte progenitor cells to mobilize into mesenteric lymph nodes (MLNs) and the dynamic expression of related chemokines during the development of rat MLNs.
METHODSImmunohistochemical analyses were used to detect the expression of Pref-1 and related chemokines. Transmission electron microscopy (TEM) was used to observe the changes in ultrastructure of MLNs.
RESULTSCells containing lipid droplets were found in all rat MLNs at embryonic day (E) 18.5, 2 and 6 weeks (w) after birth, and they were similar to fibroblastic reticular cells (FRCs) or follicular dendritic cells (FDCs) under TEM. Pref-1+ adipocyte progenitor cells were found in all MLNs. The expression level of Pref-1 was significantly increased at 2 w after birth and decreased at 6 w after birth. The tendency of Cxcl12 expression was consistent with that of Pref-1 and was positively correlated with the expression of Pref-1 (P < 0.01; r = 0.897). At E18.5, Cxcl13, and Ccr7 were significantly expressed in the MLN anlage, but the expression level of Ccl21 was low. The expression level of Cxcl13, Ccr7, and Ccl21 in MLN were significantly increased at 2 w after birth (P < 0.05), while the expression of Ccr7 and Ccl21 were significantly decreased at 6 w after birth (P < 0.05).
CONCLUSIONAdipocyte progenitor cells are involved in the rat MLNs development through differentiation into FRC and FDC. The expression of the relevant chemokines during the development of MLNs is dynamic and may be related to the maintenance of lymph nodes self-balance state.
Animals ; Chemokines ; genetics ; metabolism ; Female ; Gene Expression Regulation, Developmental ; physiology ; Intercellular Signaling Peptides and Proteins ; genetics ; metabolism ; Lymph Nodes ; embryology ; metabolism ; Membrane Proteins ; genetics ; metabolism ; Mesentery ; embryology ; Pregnancy ; Rats
10.Current progress in functions of axon guidance molecule Slit and underlying molecular mechanism.
Qi YU ; Qi-Sheng ZHOU ; Xiao ZHAO ; Qing-Xin LIU
Acta Physiologica Sinica 2012;64(2):220-230
The axon guidance molecule Slit is a secreted glucoprotein which is conserved during evolution. Slit has been implicated in regulating a variety of life activities, such as axon guidance, neuronal migration, neuronal morphological differentiation, tumor metastasis, angiogenesis and heart morphogenesis. Slit function mainly depends on the binding of its LRR-2 domain to the Ig1 domain of Roundabout (Robo) receptor, meanwhile Slit function is also mediated by a range of signaling molecules, including the heparan sulfate proteoglycans (HSPGs), GTPase-activating proteins (GAPs), tyrosine kinase Abelson, calcium ions, MicroRNA-218 and other axon guidance molecules. Several transcription factors, including Single-minded, Irx and Midline, were shown to regulate slit expression. In addition, multiple Slit isoforms exist as a consequence of alternative spliced transcripts. The research on guidance mechanism of Slit will facilitate the understanding of molecular mechanism underlying neural networks formation in the process of neural development and regeneration. Meanwhile, the studying of Slit guidance mechanism could promote the prevention and treatment of human neurological diseases and cancer metastasis.
Animals
;
Axons
;
metabolism
;
physiology
;
Cell Movement
;
physiology
;
Drosophila Proteins
;
physiology
;
Gene Expression Regulation
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
genetics
;
physiology
;
Nerve Tissue Proteins
;
genetics
;
metabolism
;
physiology
;
Neurons
;
cytology
;
Receptors, Immunologic
;
metabolism