1.Research progress of hydrogel-based growth factors for treatment of intervertebral disc degeneration.
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(11):1491-1497
OBJECTIVE:
To summarize recent research progress in hydrogel-based growth factors for treatment of intervertebral disc degeneration (IDD).
METHODS:
The relevant literature on hydrogel-based growth factors for IDD treatment at home and abroad was extensively reviewed, and their advantages and therapeutic effects in repairing IDD were analyzed and summarized.
RESULTS:
Hydrogels exhibit high hydration, biocompatibility, and biodegradability, enabling targeted delivery and sustained release of growth factors such as growth differentiation factors and transforming growth factors. This facilitates enhanced efficacy in promoting cell proliferation, extracellular matrix synthesis, and reducing inflammatory responses. Consequently, hydrogels demonstrate broad application prospects in the repair of IDD.
CONCLUSION
Research on hydrogel-based growth factors for treating IDD demonstrates advantages such as avoiding disc damage caused by repeated injections and controlling growth factor release concentrations. However, drawbacks include the limited variety of loaded growth factors and the need to verify the long-term stability and biocompatibility of hydrogels. Therefore, further research is required on aspects such as the types of loaded growth factors and the long-term stability and biocompatibility of hydrogels to establish an experimental foundation for their clinical application.
Intervertebral Disc Degeneration/therapy*
;
Hydrogels/chemistry*
;
Humans
;
Intercellular Signaling Peptides and Proteins/administration & dosage*
;
Biocompatible Materials/chemistry*
;
Animals
;
Tissue Engineering/methods*
;
Cell Proliferation/drug effects*
;
Drug Delivery Systems
2.CircRAD18 Regulates Daunorubicin Resistance in Acute Myeloid Leukemia Cells through MiR-185-5p/HDGF Axis.
Hui SUN ; Fei-Fei YANG ; Hao TANG
Journal of Experimental Hematology 2025;33(5):1318-1326
OBJECTIVE:
To investigate the mechanism of circular RNA RAD18 (CircRAD18 ) in regulating daunorubicin (DNR) resistance in acute myeloid leukemia (AML) cells through the miR-185-5p/hepatoma-derived growth factor ( HDGF) axis.
METHODS:
Real-time fluorescence quantitative PCR and immunoblotting were applied to detect the expression of CircRAD18 , miR-185-5p, and HDGF in human AML cell lines HL-60, U937, and human AML drug-resistant cell line KG1a. KG1a cells were cultured in vitro and randomly divided into control group, DNR group, DNR+negative control group, DNR+CircRAD18 knockdown group, and DNR+CircRAD18 knockdown+miR-185-5p inhibitor group. After transfection, real-time fluorescence quantitative PCR and immunoblotting were applied to detect the expression of CircRAD18 , miR-185-5p, and HDGF of cells, CCK-8 method and Ki-67 immunofluorescence staining were applied to detect cell proliferation, flow cytometry was applied to detect cell apoptosis, and immunoblotting was applied to detect the expression of cell proliferation, apoptosis and drug resistance related proteins in each group. The double luciferase reporter gene experiment was applied to detect the targeting regulation of CircRAD18 on miR-185-5p, and miR-185-5p on HDGF in KG1a cells.
RESULTS:
Compared with HL-60 and U937 cells, the expression of CircRAD18 , and HDGF mRNA and protein in KG1a cells increased (all P <0.05), while miR-185-5p decreased ( P <0.05). Compared with the control group, the CircRAD18 expression, HDGF mRNA and protein expression, cell viability, proliferation rate, and PCNA, Bcl-2, BCRP, and P-gp protein expression in the DNR+CircRAD18 knockdown group decreased (all P <0.05), while miR-185-5p expression, apoptosis rate, and Bax protein expression increased (all P <0.05). There were no obvious changes in all indicators of cells in the DNR group compared with control group ( P >0.05). Compared with the DNR group, the CircRAD18 expression, HDGF mRNA and protein expression, cell viability, proliferation rate, PCNA, Bcl-2, BCRP, and P-gp protein expression in the DNR+CircRAD18 knockdown group decreased (all P < 0.05), while miR-185-5p expression, apoptosis rate, and Bax protein expression increased (all P < 0.05). There were no obvious changes in all indicators of cells in the DNR+negative control group compared with DNR group (P >0.05). Compared with the DNR+CircRAD18 knockdown group, the HDGF mRNA and protein expression, cell viability, proliferation rate, PCNA, Bcl-2, BCRP, and P-gp protein expression in the DNR+CircRAD18 knockdown+miR-185-5p inhibitor group increased (all P < 0.05), while miR-185-5p expression, apoptosis rate, and Bax protein expression decreased (all P < 0.05). CircRAD18 was able to target and down-regulate the expression of miR-185-5p in KG1a cells, and miR-185-5p was able to target and down-regulate the HDGF expression.
CONCLUSION
Knocking down CircRAD18 can reduce HDGF expression by up-regulating miR-185-5p, thereby weakening DNR resistance in AML cells, inhibiting KG1a cell proliferation under DNR treatment, and promoting apoptosis.
Humans
;
MicroRNAs/metabolism*
;
Leukemia, Myeloid, Acute
;
Daunorubicin/pharmacology*
;
Drug Resistance, Neoplasm
;
Apoptosis
;
RNA, Circular
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Cell Proliferation
;
HL-60 Cells
;
Cell Line, Tumor
3.Therapeutic effect of concentrated growth factors combined with self-curing calcium phosphate cement on periodontal intrabony defects: Clinical and radiographic evaluation.
Xinying WANG ; Xueyuan CHENG ; Yong ZHANG ; Fei LI ; Jinyu DUAN ; Jing QIAO
Journal of Peking University(Health Sciences) 2025;57(1):42-50
OBJECTIVE:
To clarify the role of concentrated growth factors (CGF) in the treatment of periodontal cement defects using calcium phosphate cement (CPC) with self-curing properties.
METHODS:
Thirty-six intrabony defects were randomly divided into two groups. The experimental group received CGF+CPC treatment (n=18), while the control group received CPC treatment alone (n=18). The probing depth, clinical attachment loss, and hard tissue filling as measured by cone beam CT (CBCT) were evaluated at baseline and 1 year postoperatively in both groups, and the levels of major growth factors in CGF and serum were compared [platelet-derived growth factor-BB (PDGF-BB), transforming growth factor-β1 (TGF-β1), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF)].
RESULTS:
At baseline, there were no statistically significant differences in probing depth, clinical attachment loss and CBCT measurements between the two groups (P>0.05). At 1 year postoperatively, significant improvements were observed in parameters mentioned above in both groups (P < 0.05). The CGF+CPC group seemed more effective compared with the CPC group in reduction of probing depth [(4.5±1.3) mm vs. (3.2±1.1) mm] and clinical attachment gain [(3.8±0.9) mm vs. (2.0±0.5) mm, P < 0.05]. Compared with the group treated with CPC alone, the hard tissue filling degree shown by CBCT in the CGF+CPC group was significantly increased [the reduction of the depth of the intrabony defects was (3.9±1.2) mm vs. (2.1±0.7) mm, respectively, P < 0.01]. At 1 year post-operatively, the volume of the intrabony defects shown by CBCT in the CGF+CPC group was reduced by (0.031 8±0.004 1) mL, which was significantly more than that in the CPC group [(0.019 7±0.001 2) mL, P < 0.05]. In addition, the concentration of the main growth factors (PDGF-BB, TGF-β1, IGF-1, and VEGF) in CGF were higher than those in serum (P < 0.001).
CONCLUSION
After 1 year of follow-up, the results of the present study indicated that CGF could significantly improve the clinical and radiological effects of CPC on the treatment of periodontal intrabony defects.
Humans
;
Calcium Phosphates/therapeutic use*
;
Male
;
Female
;
Bone Cements/therapeutic use*
;
Middle Aged
;
Cone-Beam Computed Tomography
;
Alveolar Bone Loss/therapy*
;
Becaplermin
;
Adult
;
Insulin-Like Growth Factor I
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Proto-Oncogene Proteins c-sis/blood*
;
Transforming Growth Factor beta1/blood*
;
Vascular Endothelial Growth Factor A/blood*
4.Plastrum Testudinis Stimulates Bone Formation through Wnt/β-catenin Signaling Pathway Regulated by miR-214.
Qing LIN ; Bi-Yi ZHAO ; Xiao-Yun LI ; Wei-Peng SUN ; Hong-Hao HUANG ; Yu-Mei YANG ; Hao-Yu WANG ; Xiao-Feng ZHU ; Li YANG ; Rong-Hua ZHANG
Chinese journal of integrative medicine 2025;31(8):707-716
OBJECTIVE:
To investigate the Wnt signaling pathway and miRNAs mechanism of extracts of Plastrum Testudinis (PT) in the treatment of osteoporosis (OP).
METHODS:
Thirty female Sprague Dawley rats were randomly divided into 5 groups by random number table method, including sham group, ovariectomized group (OVX), ovariectomized groups treated with high-, medium-, and low-dose PT (160, 80, 40 mg/kg per day, respectively), with 6 rats in each group. Except for the sham group, the other rats underwent bilateral ovariectomy to simulate OP and received PT by oral gavage for 10 consecutive weeks. After treatment, bone mineral density was measured by dual-energy X-ray absorptiometry; bone microstructure was analyzed by micro-computed tomography and hematoxylin and eosin staining; and the expressions of osteogenic differentiation-related factors were detected by immunochemistry, Western blot, and quantitative polymerase chain reaction. In addition, Dickkopf-1 (Dkk-1) was used to inhibit the Wnt signaling pathway in bone marrow mesenchymal stem cells (BMSCs) and miRNA overexpression was used to evaluate the effect of miR-214 on the osteogenic differentiation of BMSCs. Subsequently, PT extract was used to rescue the effects of Dkk-1 and miR-214, and its impacts on the osteogenic differentiation-related factors of BMSCs were evaluated.
RESULTS:
PT-M and PT-L significantly reduced the weight gain in OVX rats (P<0.05). PT also regulated the bone mass and bone microarchitecture of the femur in OVX rats, and increased the expressions of bone formation-related factors including alkaline phosphatase, bone morphogenetic protein type 2, collagen type I alpha 1, and runt-related transcription factor 2 when compared with the OVX group (P<0.05 or P<0.01). Meanwhile, different doses of PT significantly rescued the inhibition of Wnt signaling pathway-related factors in OVX rats, and increased the mRNA or protein expressions of Wnt3a, β-catenin, glycogen synthase kinase-3β, and low-density lipoprotein receptor-related protein 5 (P<0.05 or P<0.01). PT stimulated the osteogenic differentiation of BMSCs inhibited by Dkk-1 and activated the Wnt signaling pathway. In addition, the expression of miR-214 was decreased in OVX rats (P<0.01), and it was negatively correlated with the osteogenic differentiation of BMSCs (P<0.01). MiR-214 mimic inhibited Wnt signaling pathway in BMSCs (P<0.05 or P<0.01). Conversely, PT effectively counteracted the effect of miR-214 mimic, thereby activating the Wnt signaling pathway and stimulating osteogenic differentiation in BMSCs (P<0.05 or P<0.01).
CONCLUSION
PT stimulates bone formation in OVX rats through β-catenin-mediated Wnt signaling pathway, which may be related to inhibiting miR-214 in BMSCs.
Animals
;
MicroRNAs/genetics*
;
Female
;
Rats, Sprague-Dawley
;
Wnt Signaling Pathway/genetics*
;
Osteogenesis/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Cell Differentiation/drug effects*
;
Bone Density/drug effects*
;
Ovariectomy
;
Osteoporosis/drug therapy*
;
beta Catenin/metabolism*
;
Rats
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
5.Apelin promotes proliferation, migration, and angiogenesis in bladder cancer by activating the FGF2/FGFR1 pathway.
Wei SU ; Houhua LAI ; Xin TANG ; Qun ZHOU ; Yachun TANG ; Hao FU ; Xuancai CHEN
Journal of Southern Medical University 2025;45(6):1289-1296
OBJECTIVES:
To investigate the role of apelin in regulating proliferation, migration and angiogenesis of bladder cancer cells and the possible regulatory mechanism.
METHODS:
GEO database was used to screen the differentially expressed genes in bladder cancer tissues and cells. Bladder cancer and paired adjacent tissues were collected from 60 patients for analysis of apelin expressions in relation to clinicopathological parameters. In cultured bladder cancer J82 cells and human umbilical vein endothelial cells (HUVECs), the effects of transfection with an apelin-overexpressing plasmid or specific siRNAs targeting apelin, fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 1 (FGFR1) on proliferation and migration of J82 cells and tube formation in HUVECs were examined using plate cloning assay, Transwell assay, and angiogenesis assay; the changes in FGF2 expression and FGFR1 phosphorylation were detected using Western blotting.
RESULTS:
The expression level of apelin was significantly higher in bladder cancer tissues than adjacent tissues, and bladder cancer cell lines (T24 and J82) also expressed higher mRNA and protein levels of apelin than SV-HUC-1 cells. Apelin expression level in bladder cancer tissues was correlated with tumor invasion, distant metastasis and advanced TNM stages. Apelin knockdown significantly suppressed proliferation and migration of J82 cells and decreased the total angiogenic length of HUVECs. In contrast, apelin overexpression significantly promoted proliferation and migration and enhanced FGFR1 phosphorylation in J82 cells, and increased the total angiogenesis length in HUVECs, but this effects were effectively mitigated by transfection of the cells with FGF2 siRNA or FGFR1 siRNA.
CONCLUSIONS
High expression of apelin promotes J82 cell proliferation and migration and HUVEC angiogenesis by promoting activation of the FGF2/FGFR1 pathway.
Humans
;
Urinary Bladder Neoplasms/blood supply*
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
;
Cell Proliferation
;
Cell Movement
;
Fibroblast Growth Factor 2/metabolism*
;
Neovascularization, Pathologic
;
Human Umbilical Vein Endothelial Cells
;
Cell Line, Tumor
;
Signal Transduction
;
Apelin
;
Intercellular Signaling Peptides and Proteins/genetics*
;
Female
;
Male
;
Angiogenesis
6.Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation.
Liang DONG ; Bingtai LU ; Wenwen LUO ; Xiaoqiong GU ; Chengxiang WU ; Luca TROTTA ; Mikko SEPPANEN ; Yuxia ZHANG ; Andrey V ZAVIALOV
Frontiers of Medicine 2025;19(2):359-375
Adenosine, a critical molecule regulating cellular function both inside and outside cells, is controlled by two human adenosine deaminases: ADA1 and ADA2. While ADA1 primarily resides in the cytoplasm, ADA2 can be transported to lysosomes within cells or secreted outside the cell. Patients with ADA2 deficiency (DADA2) often suffer from systemic vasculitis due to elevated levels of TNF-α in their blood. Monocytes from DADA2 patients exhibit excessive TNF-α secretion and differentiate into pro-inflammatory M1-type macrophages. Our findings demonstrate that ADA2 localizes to endolysosomes within macrophages, and its intracellular concentration decreases in cells secreting TNF-α. This suggests that ADA2 may function as a lysosomal adenosine deaminase, regulating TNF-α expression by the cells. Interestingly, pneumonia patients exhibit higher ADA2 concentrations in their bronchoalveolar lavage (BAL), correlating with elevated pro-inflammatory cytokine levels. Conversely, cord blood has low ADA2 levels, creating a more immunosuppressive environment. Additionally, secreted ADA2 can bind to apoptotic cells, activating immune cells by reducing extracellular adenosine levels. These findings imply that ADA2 release from monocytes during inflammation, triggered by growth factors, may be crucial for cell activation. Targeting intracellular and extracellular ADA2 activities could pave the way for novel therapies in inflammatory and autoimmune disorders.
Humans
;
Adenosine Deaminase/deficiency*
;
Monocytes/cytology*
;
Cell Differentiation
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Biomarkers/metabolism*
;
Macrophages/metabolism*
;
Pneumonia/metabolism*
7.L-shape technique with concentrated growth factor for horizontal bone defects in the maxillary anterior region: a clinical and radiographic study.
Ruiwen SHI ; Hu YANG ; Yue LIU ; Yilin SHI ; Shengben ZHANG ; Yu LIU ; Feng SONG ; Jing LAN
West China Journal of Stomatology 2025;43(1):76-83
OBJECTIVES:
To study the clinical effect of the L-shape technique combined with concentrated growth factor on the horizontal bone defects of maxillary anterior teeth.
METHODS:
Twenty-five implants from 25 patients who underwent single maxillary anterior tooth implantation with simultaneous bone grafting were selected as the study subjects. Based on the bone grafting techniques, the patients were divided into a test group (L-shaped technique with guided bone regeneration combined with concentrated growth factor, 11 cases) and a control group (traditional guided bone regeneration combined with concentrated growth factor, 14 cases). The early discomfort and wound healing conditions in the two groups at two weeks after surgery were compared. The horizontal bone thickness, vertical bone thickness, and grayscale values in the augmentation area were measured immediately postsurgery and six months after surgery. Implant stability, hard tissue resorption within six months, and grayscale values were compared between the two groups.
RESULTS:
Differences in early discomfort, wound healing, implant stability, and grayscale values between the two groups were not statistically significant (P>0.05). Vertical bone thickness in the test group was significantly better than that in the control group at six months after surgery (P<0.05). The variation in horizontal bone thickness in the test group was significantly higher than that in the control group (P<0.05).
CONCLUSIONS
The application of the L-shape technique with concentrated growth factor for horizontal bone defects in the anterior maxillary area yielded satisfactory short-term results in terms of bone augmentation, early discomfort, wound healing, and implant stability at six months after surgery.
Humans
;
Maxilla/diagnostic imaging*
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Wound Healing
;
Bone Transplantation/methods*
;
Dental Implantation, Endosseous/methods*
;
Bone Regeneration
;
Male
;
Female
;
Adult
;
Dental Implants, Single-Tooth
;
Middle Aged
8.Evaluation of the clinical effect of concentrated growth factor combined with sticky bone in maxillary anterior alveolar ridge preservation.
Xueqin WEI ; Shengzhi ZHANG ; Kai BA
West China Journal of Stomatology 2025;43(5):671-678
OBJECTIVES:
To compare the clinical effects of concentrated growth factor (CGF) membrane and Bio-Gide ® collagen membrane, combined with Bio-Oss ® sticky bone respectively in alveolar ridge preservation (ARP) of maxillary anterior teeth.
METHODS:
Thirty patients who needed alveolar ridge preservation after maxillary anterior tooth extraction were selected and randomly assigned to the Bio-Gide group and the CGF group. In both groups, the extraction sockets were tightly filled with the Bio-Oss® sticky bone. In the Bio-Gide group used Bio-Gide® collagen membrane to cover the upper edge of the Bio-Oss® sticky bone and closed the wound. The CGF group, the CGF membrane was covered on the upper edge of the Bio-Oss® sticky bone and the wound was closed. The soft tissue wound healing status at 10 days after ARP, the changes in alveolar ridge height and width immediately after ARP and at 6 months after ARP, and the doctor-patient satisfaction at 6 months after ARP were compared and evaluated between the two groups.
RESULTS:
At 6 months after ARP, there was no statistically significant difference in the changes of alveolar bone width and height between the two groups (P>0.05). However, the CGF group showed better performance in soft tissue healing after ARP and doctor-patient satisfaction, and the differences were statistically significant (P<0.05).
CONCLUSIONS
Compared with the Bio-Gide® collagen membrane, the combined application of CGF membrane and Bio-Oss® sticky bone can lead to better soft tissue healing after ARP of maxillary anterior teeth and higher doctor-patient satisfaction, showing obvious advantages in ARP of maxillary anterior teeth.
Humans
;
Maxilla/surgery*
;
Tooth Extraction
;
Alveolar Process/surgery*
;
Membranes, Artificial
;
Alveolar Ridge Augmentation/methods*
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Minerals/therapeutic use*
;
Collagen
;
Wound Healing
;
Tooth Socket/surgery*
;
Bone Substitutes/therapeutic use*
;
Male
;
Female
;
Middle Aged
;
Alveolar Bone Loss/prevention & control*
;
Adult
9.Preparation of polycaprolactone-polyethylene glycol-concentrated growth factor composite scaffolds and the effects on the biological properties of human periodontal ligament stem cells.
Li GAO ; Mingyue ZHAO ; Shun YANG ; Runan WANG ; Jiajia CHENG ; Guangsheng CHEN
West China Journal of Stomatology 2025;43(6):819-828
OBJECTIVES:
This study investigated the effects of a polycaprolactone (PCL)-polyethylene glycol (PEG) scaffold incorporated with concentrated growth factor (CGF) on the adhesion, proliferation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs).
METHODS:
The PCL-PEG-CGF composite scaffold was fabricated using an immersion and freeze-drying technique. Its microstructure, mechanical properties, and biocompatibility were systematically characterized. The hPDLSCs were isolated through enzymatic digestion, and the hPDLSCs were identified through flow cytometry. Third-passage hPDLSCs were seeded onto the composite scaffolds, and their adhesion, proliferation and osteogenic differentiation were assessed using CCK-8 assays, 4',6-diamidino-2-phenylindole (DAPI) staining, alkaline phosphatase (ALP) staining, alizarin red staining, and Western blot analysis of osteogenesis-related proteins [Runt-related transcription factor 2 (Runx2), ALP, and morphogenetic protein 2 (BMP2)].
RESULTS:
Scanning electron microscopy revealed that the PCL-PEG-CGF composite scaffold exhibited a honeycomb-like structure with heterogeneous pore sizes. The composite scaffold exhibited excellent hydrophilicity, as evidenced by a contact angle (θ) approaching 0° within 6 s. Its elastic modulus was measured at (4.590 0±0.149 3) MPa, with comparable hydrophilicity, fracture tensile strength, and fracture elongation to PCL-PEG scaffold. The hPDLSCs exhibited significantly improved adhesion to the PCL-PEG-CGF composite scaffold compared with the PCL-PEG scaffold (P<0.01). Additionally, cell proliferation was markedly improved in all the experimental groups on days 3, 5, and 7 (P<0.01), and statistically significant differences were found between the PCL-PEG-CGF group and other groups (P<0.01). The PCL-PEG-CGF group showed significantly elevated ALP activity (P<0.05), increased mineralization nodule formation, and upregulated expression of osteogenic-related proteins (Runx2, BMP2 and ALP; P<0.05).
CONCLUSIONS
The PCL-PEG-CGF composite scaffold exhibited excellent mechanical properties and biocompatibility, enhancing the adhesion and proliferation of hPDLSCs and promoting their osteogenic differentiation by upregulating osteogenic-related proteins.
Humans
;
Polyesters/chemistry*
;
Periodontal Ligament/cytology*
;
Polyethylene Glycols/chemistry*
;
Stem Cells/cytology*
;
Tissue Scaffolds
;
Cell Proliferation
;
Osteogenesis
;
Cell Differentiation
;
Cell Adhesion
;
Bone Morphogenetic Protein 2/metabolism*
;
Cells, Cultured
;
Alkaline Phosphatase/metabolism*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Intercellular Signaling Peptides and Proteins/pharmacology*
;
Tissue Engineering/methods*
10.Application of growth factors and their mimetics in tissue repair.
Zhuanglin HUANG ; Yufeng CHEN ; Yuanling LIU ; Hong LIANG
Chinese Journal of Biotechnology 2025;41(4):1291-1308
Growth factors (GFs) are a class of peptides that facilitate cell growth by binding to specific receptors on the cell membrane. With unique properties, GFs are widely applied in the repair of injured tissue. To address the limitations associated with natural peptide-based GFs and recombinant GFs, researchers have developed diverse GF mimetics. This article offers a comprehensive review on common types of GFs and their applications in tissue repair and summarizes the features of GF mimetics currently under development. The aim is to provide valuable references for promoting the application of GFs in regenerative medicine.
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Humans
;
Tissue Engineering/methods*
;
Regenerative Medicine/methods*
;
Animals
;
Wound Healing/drug effects*
;
Biomimetic Materials

Result Analysis
Print
Save
E-mail