1.PINK1 Deficiency Decreases Expression Levels of mir-326, mir-330, and mir-3099 during Brain Development and Neural Stem Cell Differentiation.
Insup CHOI ; Joo Hong WOO ; Ilo JOU ; Eun hye JOE
Experimental Neurobiology 2016;25(1):14-23
PTEN-induced putative kinase 1 (PINK1) is a Parkinson's disease (PD) gene. We examined miRNAs regulated by PINK1 during brain development and neural stem cell (NSC) differentiation, and found that lvels of miRNAs related to tumors and inflammation were different between 1-day-old-wild type (WT) and PINK1-knockout (KO) mouse brains. Notably, levels of miR-326, miR-330 and miR-3099, which are related to astroglioma, increased during brain development and NSC differentiation, and were significantly reduced in the absence of PINK1. Interestingly, in the presence of ciliary neurotrophic factor (CNTF), which pushes differentiation of NSCs into astrocytes, miR-326, miR-330, and miR-3099 levels in KO NSCs were also lower than those in WT NSCs. Furthermore, mimics of all three miRNAs increased expression of the astrocytic marker glial fibrillary acidic protein (GFAP) during differentiation of KO NSCs, but inhibitors of these miRNAs decreased GFAP expression in WT NSCs. Moreover, these miRNAs increased the translational efficacy of GFAP through the 3'-UTR of GFAP mRNA. Taken together, these results suggest that PINK1 deficiency reduce expression levels of miR-326, miR-330 and miR-3099, which may regulate GFAP expression during NSC differentiation and brain development.
Animals
;
Astrocytes
;
Astrocytoma
;
Brain*
;
Ciliary Neurotrophic Factor
;
Glial Fibrillary Acidic Protein
;
Inflammation
;
Mice
;
MicroRNAs
;
Neural Stem Cells*
;
Parkinson Disease
;
Phosphotransferases
;
RNA, Messenger
2.LRRK2 Inhibits FAK Activity by Promoting FERM-mediated Autoinhibition of FAK and Recruiting the Tyrosine Phosphatase, SHP-2.
Insup CHOI ; Ji won BYUN ; Sang Myun PARK ; Ilo JOU ; Eun Hye JOE
Experimental Neurobiology 2016;25(5):269-276
Mutation of leucine-rich repeat kinase 2 (LRRK2) causes an autosomal dominant and late-onset familial Parkinson's disease (PD). Recently, we reported that LRRK2 directly binds to and phosphorylates the threonine 474 (T474)-containing Thr-X-Arg(Lys) (TXR) motif of focal adhesion kinase (FAK), thereby inhibiting the phosphorylation of FAK at tyrosine (Y) 397 residue (pY397-FAK), which is a marker of its activation. Mechanistically, however, it remained unclear how T474-FAK phosphorylation suppressed FAK activation. Here, we report that T474-FAK phosphorylation could inhibit FAK activation via at least two different mechanisms. First, T474 phosphorylation appears to induce a conformational change of FAK, enabling its N-terminal FERM domain to autoinhibit Y397 phosphorylation. This is supported by the observation that the levels of pY397-FAK were increased by deletion of the FERM domain and/or mutation of the FERM domain to prevent its interaction with the kinase domain of FAK. Second, pT474-FAK appears to recruit SHP-2, which is a phosphatase responsible for dephosphorylating pY397-FAK. We found that mutation of T474 into glutamate (T474E-FAK) to mimic phosphorylation induced more strong interaction with SHP-2 than WT-FAK, and that pharmacological inhibition of SHP-2 with NSC-87877 rescued the level of pY397 in HEK293T cells. These results collectively show that LRRK2 suppresses FAK activation through diverse mechanisms that include the promotion of autoinhibition and/or the recruitment of phosphatases, such as SHP-2.
Focal Adhesion Protein-Tyrosine Kinases
;
Glutamic Acid
;
Parkinson Disease
;
Phosphoric Monoester Hydrolases
;
Phosphorylation
;
Phosphotransferases
;
Protein Tyrosine Phosphatase, Non-Receptor Type 11*
;
Threonine
;
Tyrosine*
3.PINK1 Deficiency Enhances Inflammatory Cytokine Release from Acutely Prepared Brain Slices.
Jun KIM ; Ji Won BYUN ; Insup CHOI ; Beomsue KIM ; Hey Kyeong JEONG ; Ilo JOU ; Eunhye JOE
Experimental Neurobiology 2013;22(1):38-44
Parkinson's disease (PD) is the second most common neurodegenerative motor disease caused by degeneration of dopaminergic neurons in the substantia nigra. Because brain inflammation has been considered a risk factor for PD, we analyzed whether PTEN induced putative kinase 1 (PINK1), an autosomal recessive familial PD gene, regulates brain inflammation during injury states. Using acutely prepared cortical slices to mimic injury, we analyzed expression of the pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-6 at the mRNA and protein levels. Both mRNA and protein expression of these cytokines was higher at 6-24 h after slicing in PINK1 knockout (KO) slices compared to that in wild-type (WT) slices. In serial experiments to understand the signaling pathways that increase inflammatory responses in KO slices, we found that IkappaB degradation was enhanced but Akt phosphorylation decreased in KO slices compared to those in WT slices. In further experiments, an inhibitor of PI3K (LY294002) upstream of Akt increased expression of pro-inflammatory cytokines. Taken together, these results suggest that PINK1 deficiency enhance brain inflammation through reduced Akt activation and enhanced IkappaB degradation in response to brain injury.
Brain
;
Brain Injuries
;
Cytokines
;
Dopaminergic Neurons
;
Encephalitis
;
Hydrazines
;
Inflammation
;
Interleukin-6
;
Interleukins
;
Parkinson Disease
;
Phosphorylation
;
Phosphotransferases
;
Risk Factors
;
RNA, Messenger
;
Substantia Nigra
;
Tumor Necrosis Factor-alpha