1.Modified Si-Miao-San ameliorates pancreatic B cell dysfunction by inhibition of reactive oxygen species-associated inflammation through AMP-kinase activation.
Shu-Wan SHANG ; Jiang-Lin YANG ; Fang HUANG ; Kang LIU ; Bao-Lin LIU
Chinese Journal of Natural Medicines (English Ed.) 2014;12(5):351-360
AIM:
To observe the effect of modified Si-Miao-San (mSMS) on advanced glycation end products (AGEs)-induced pancreatic B cell dysfunction, as well as examining the underlying mechanisms.
METHOD:
Pancreatic B cells (INS-1) were stimulated with advanced glycation end products (AGEs, 200 μg·mL(-1)) for 24 h to produce dysfunction in pancreatic B cells and the effects of mSMS observed on insulin secretion, NF-κB (p65) phosphorylation, reactive oxygen species (ROS) production, mitochondria membrane potential (Δψm), cell apoptosis, phosphorylation of AMP-kinase (AMPK), and caspase 3 activity.
RESULTS:
The AGEs challenge resulted in increased basal insulin secretion, but decreased insulin secretion in response to high glucose, whereas this situation was reversed by mSMS treatment. AGEs stimulation induced NF-κB (p65) phosphorylation and reactive oxygen species (ROS) production, as well as Δψm collapse and cell apoptosis. mSMS inhibited ROS production and inhibited NF-κB activation by attenuating p65 phosphorylation. Meanwhile, AGEs-induced Δψm collapse and cell apoptosis were also reversed by mSMS treatment. Compound C, an inhibitor of AMP-Kinase (AMPK), abolished the beneficial effects of mSMS on the regulation of B cell function, indicating the involvement of AMPK.
CONCLUSION
mSMS ameliorated AGEs-induced B cell dysfunction by suppressing ROS-associated inflammation, and this action was related to its beneficial regulation of AMPK activity.
AMP-Activated Protein Kinases
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Drugs, Chinese Herbal
;
pharmacology
;
Glucose
;
metabolism
;
Glycation End Products, Advanced
;
metabolism
;
Humans
;
Inflammation
;
drug therapy
;
enzymology
;
genetics
;
metabolism
;
Insulin-Secreting Cells
;
cytology
;
drug effects
;
enzymology
;
metabolism
;
Phosphorylation
;
Rats
;
Reactive Oxygen Species
;
metabolism
2.Coptidis rhizoma extract protects against cytokine-induced death of pancreatic beta-cells through suppression of NF-kappa B activation.
Eun Kyung KIM ; Kang Beom KWON ; Mi Jeong HAN ; Mi Young SONG ; Ji Hyun LEE ; Na LV ; Sun O KA ; Seung Ryong YEOM ; Young Dal KWON ; Do Gon RYU ; Kang San KIM ; Jin Woo PARK ; Raekil PARK ; Byung Hyun PARK
Experimental & Molecular Medicine 2007;39(2):149-159
We demonstrated previously that Coptidis rhizoma extract (CRE) prevented S-nitroso-N-acetylpenicillamine-induced apoptotic cell death via the inhibition of mitochondrial membrane potential disruption and cytochrome c release in RINm5F (RIN) rat insulinoma cells. In this study, the preventive effects of CRE against cytokine-induced beta-cell death was assessed. Cytokines generated by immune cells infiltrating pancreatic islets are crucial mediators of beta-cell destruction in insulin-dependent diabetes mellitus. The treatment of RIN cells with IL-1beta and IFN-gamma resulted in a reduction of cell viability. CRE completely protected IL-1beta and IFN-gamma-mediated cell death in a concentration-dependent manner. Incubation with CRE induced a significant suppression of IL-1beta and IFN-gamma-induced nitric oxide (NO) production, a finding which correlated well with reduced levels of the iNOS mRNA and protein. The molecular mechanism by which CRE inhibited iNOS gene expression appeared to involve the inhibition of NF-kappa B activation. The IL-1beta and IFN-gamma-stimulated RIN cells showed increases in NF-kappa B binding activity and p65 subunit levels in nucleus, and IkappaBalpha degradation in cytosol compared to unstimulated cells. Furthermore, the protective effects of CRE were verified via the observation of reduced NO generation and iNOS expression, and normal insulin-secretion responses to glucose in IL-1beta and IFN-gamma-treated islets.
Animals
;
Cell Death/drug effects
;
Cell Line
;
Cell Nucleus/metabolism
;
Cell Survival/drug effects
;
Drugs, Chinese Herbal/*pharmacology
;
Gene Expression Regulation, Enzymologic/drug effects
;
Glucose/pharmacology
;
I-kappa B Proteins/metabolism
;
Insulin/secretion
;
Insulin-Secreting Cells/*cytology/*drug effects/enzymology
;
Interferon-gamma/*pharmacology
;
Interleukin-1beta/*pharmacology
;
Male
;
NF-kappa B/*metabolism
;
Nitric Oxide/biosynthesis
;
Nitric Oxide Synthase Type II/genetics/metabolism
;
Protein Transport/drug effects
;
RNA, Messenger/genetics/metabolism
;
Rats
;
Rats, Sprague-Dawley